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Abstract 

This paper considers a panel stochastic production frontier model that allows the dynamic 

adjustment of technical inefficiency. In particular, we assume that inefficiency follows an 

AR(1) process. That is, the current year’s inefficiency for a firm depends on its past 

inefficiency plus a transient inefficiency incurred in the current year. Inter-firm variations in 

the transient inefficiency are explained by some firm-specific covariates. We consider four 

likelihood-based approaches to estimate the model: the full maximum likelihood, pairwise 

composite likelihood, marginal composite likelihood and quasi-maximum likelihood 

approaches. Moreover, we provide Monte Carlo simulation results to examine and compare 
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models.  
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1. Introduction 

Panel data stochastic frontier (SF) models are widely used by both academicians and practitioners 

to estimate technical (in)efficiency, examine its temporal behavior and include factors that can explain 

cross-sectional as well as temporal differences in efficiency. Although firm efficiency is allowed to 

change over time in almost all panel data SF models, only a handful of papers explicitly modeled 

dynamic adjustment in inefficiency. We differentiate these models from the vast majority of panel data 

models that use time-varying inefficiency. Our focus here is on the panel SF models that consider 

dynamic adjustment in temporal technical inefficiency explicitly. More specifically, we consider a 

panel model in which technical inefficiency is made dynamic by allowing it to follow a first-order 

autoregressive (AR(1)) process. In an AR(1) specification, a firm at time t adjusts its past inefficiency 

but exposes itself to an additional inefficiency at the same time t. We call this transient inefficiency 

and explain its variations across firms in terms of some covariates. In this paper we consider a dynamic 

panel SF model with the above features and propose to estimate it using three likelihood-based 

approaches. 

Ahn, Good and Sickles (2000) (hereafter, AGS) were the first to consider a model that includes 

dynamic behavior of technical inefficiency explicitly by allowing inefficiency to evolve over time 

following an AR(1) process. The logic of this formulation is that firms that are currently inefficient 

will try to reduce their inefficiency going forward, but they will be inefficient in the future time periods 

also (Amsler et al. (2014)). Thus the very nature of inefficiency is dynamic, which can be captured by 

an AR(1) process. If inefficiency follows an AR(1) process, the SF model becomes dynamic and our 

dynamic stochastic frontier (DSF) model uses this specification. 

The DSF model under investigation in this paper is related to the AGS model in several ways. 

However, the main difference is that in AGS the focus is on the estimation of long-run (LR) relative 

inefficiency, which is time-invariant but firm-specific, while our interest is primarily to estimate 

observation-specific inefficiency and its adjustment over time. AGS propose using the generalized 

method of moments (GMM) approach, which is distribution free. Our likelihood-based approaches use 

distributional assumptions on the noise and inefficiency components. There are some trade-offs 

between the distribution-free GMM and the likelihood-based approaches. Similar to least squares 

estimation, the intercept term of the DSF model cannot be identified by the distribution-free GMM 

approach since the inefficiency term has nonzero mean. The prediction of the LR inefficiency in GMM 

is based on the unconditional expectation of the inefficiency, which cannot use the information about 

the residuals. Although the likelihood-based approach is more restrictive in the sense that it uses 
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distributional assumptions, it can identify all the parameters and the information about residuals can 

be used in the prediction of the inefficiency. In order to provide an analytical framework to estimate 

firm-specific inefficiency and its evolution over time, we focus our discussion on the likelihood-based 

approaches.1  

In particular, we consider the full maximum likelihood (FML), composite likelihood (CL), and 

the quasi-maximum likelihood (QML) methods to estimate the parameters and inefficiency in the 

above-mentioned DSF model. The last two approaches provide alternatives to the FML approach when 

the true joint probability function is difficult to evaluate or the time span of the observed data is long. 

Thus these methods are likely to be useful to the practitioners who have difficulty in estimating the 

FML, which is more complicated than the other two. All these models are capable of estimating 

observation-specific inefficiency and its adjustment over time. Thus the likelihood based approaches 

can deliver more than their GMM counterpart mainly because the former use distributional 

assumptions on the inefficiency and the noise components, while the latter is distribution free.  

The rest of the paper is organized as follows. Section 2 briefly reviews and discusses some 

relevant literatures and introduces the DSF model. In section 3 we discuss the FML, PCL and QML 

methods and the estimators of the inefficiency and efficiency. We present some Monte Carlo simulation 

results and compare the finite sample performance of these estimators in section 4. We provide an 

empirical application using a panel data of 73 Finnish electricity distribution operators observed during 

2008-2014. Section 6 concludes the paper. 

2. The dynamic stochastic frontier model 

2.1. Review of the dynamic stochastic frontier models  

In this section, we provide a brief review of the DSF models. Let 𝑦௜௧ be the log of output, 𝑥௜௧ 
be a vector of 𝑘 ൈ 1 log inputs, and t be a time trend variable, where 𝑖 ൌ 1, … , 𝑁 denotes the 𝑖୲୦ 

firm and 𝑡 ൌ 1, … , 𝑇 denotes the 𝑡୲୦ time period. We consider the following Cobb-Douglas DSF 

model:  

𝑦௜௧ ൌ 𝑥௜௧
⊺ 𝛽 ൅ 𝜋଴ ൅ 𝜋ଵ𝑡 ൅ 𝑣௜௧ െ 𝑢௜௧,                           (1) 

                                                       
1  Tsionas (2006) and Emvalomatis (2012) consider DSF models with different formulations in the dynamics of the 
inefficiency. Both Tsionas (2006) and Emvalomatis (2012) suggest estimating their models by the Bayesian approach. Our 
specification of the dynamic behavior is different from Tsionas (2006) and Emvalomatis (2012) and cannot be directly 
compared. 
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where 𝑣௜௧ ~𝑖. 𝑖. 𝑑. 𝑁ሺ0, 𝜎௩
ଶሻ is the symmetric noise and 𝑢௜௧ ൒ 0 represents the one-sided technical 

inefficiency. The dynamic part of the model in (1) comes from the specification of the inefficiency 

term 𝑢௜௧ (which is formally introduced in section 2.2). The inclusion of the time trend variable in (1) 

allows the technology to shift over time (technical change) at the rate 𝜋ଵ, and it is common to all firms. 

The model can be further generalized by allowing the time trend variable to interact with the input 

variables, in which case technical change becomes non-constant (depends on the values of the 𝑥௜௧ 

variables).  

There are a few alternative specifications of the DSF model which we discuss below.2 The 

main differences among these models are in the specifications of the random components 𝑣௜௧ and 𝑢௜௧. 

We summarize the main assumptions of these models in Table 1. The AGS model is more general than 

the other models in Table 1 in the sense that AGS do not impose any distributional assumptions on 𝑣௜௧ 

and 𝑢௜௧, and they also allow the AR coefficient to be a firm-specific but time-invariant parameter. AGS 

estimate the model using the GMM approach, which is robust to distributional misspecification. The 

main drawback in doing this is that the number of parameters increases with the number of firms. Thus 

the model is likely to suffer from the incidental parameter problem. Their distribution free approach 

has another shortcoming with respect to prediction of technical inefficiency. It can predict only LR 

inefficiency, which is defined as the expected value of inefficiency and is a function of firm-specific 

parameters (made clear in the next sub-section).3 Unless observation-specific inefficiency is predicted, 

one cannot estimate the evolution of inefficiency for each firm.  

    Tsionas (2006) and Emvalomatis (2012) also consider DSF models, but they specify 

inefficiency differently. Tsionas (2006) assumes the logarithm of inefficiency, ln(𝑢௜௧), follows an AR(1) 

process whereas Emvalomatis (2012) assumes ln ሺTE௜௧/ሺ1 െ TE௜௧ሻሻ, follows an AR(1) process, where 

TE௜௧ ൌ exp ሺെ𝑢௜௧ሻ is technical efficiency. Moreover, Emvalomatis (2012) separates the time-invariant 

unobserved heterogeneity from a first-order autoregressive inefficiency and suggests estimating the 

model using a Bayesian correlated random-effects approach in which a distribution of the firm-specific 

effects is considered. The common characteristic of these two models is that they both apply some 

transformations to the inefficiency term 𝑢௜௧ so that the transformed inefficiency term follows an AR(1) 

process with a normally distributed error and the inefficiency 𝑢௜௧  is kept positive. The joint 

distribution of the transformed inefficiencies is simply a multivariate normal distribution, which seems 

                                                       
2  Tsionas (2006) and Emvalomatis (2012) consider DSF models with different formulations in the dynamics of the 
inefficiency. Both Tsionas (2006) and Emvalomatis (2012) suggest estimating their models by the Bayesian approach. Our 
specification of the dynamic behavior is different from Tsionas (2006) and Emvalomatis (2012) and cannot be directly 
compared. 
3 Since inefficiency in a dynamic setting needs to be stationary, its expected value cannot depend on time although it can 
be firm-specific. 
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to be easier to deal with in the likelihood-based approach. However, the joint distributions of the cross-

period composite errors in their models are almost intractable after the transformation. Because of this 

both Tsionas (2006) and Emvalomatis (2012) apply the Bayesian approach to estimate their models. 

That is, both use the Bayesian MCMC approach because of the difficulty in deriving the likelihood 

function.  

In addition to the above models that directly specify the dynamic adjustment process of the 

technical inefficiency, Amsler et al. (2014) suggest using a copula function to capture the time 

dependence of inefficiency in the panel SF models. With a correctly specified marginal distribution 

and an appropriately chosen copula function, one may approximate the true joint pdf and estimate the 

parameters by the QML approach, which seems to be the easiest one to implement from a practical 

point of view. However, the loss of efficiency in the QML approach compared with the FML estimation 

has not yet been investigated in the SF models.  

2.2. The proposed model 

We assume that technical inefficiency in (1) follows an AR(1) process, i.e., 

𝑢௜௧ ൌ 𝜌𝑢௜௧ିଵ ൅ 𝑢௜௧
∗ ,     𝑡 ൌ 1, … , 𝑇,            (2) 

where 𝜌 is the AR(1) coefficient (0 ൑ 𝜌 ൏ 1) and 𝑢௜௧
∗  is a nonnegative random variable. We restrict 

the coefficient 𝜌 to be bounded between 0 and 1 so that 𝑢௜௧ ൒ 0 for all 𝑖, 𝑡. The standard SF panel 

model corresponds to the special case when 𝜌 ൌ 0. If 𝜌 ൌ 1, the inefficiency level becomes the sum 

of all past inefficiency levels of 𝑢௜௧
∗ , and therefore 𝑢௜௧ would explode over time. Therefore, a firm 

with 𝜌 ൌ 1 cannot survive in the long-run.  

The inefficiency term 𝑢௜௧ in (2) has two parts. At time 𝑡, a firm 𝑖 inherits part of its inefficiency 

from the previous year’s inefficiency, 𝑢௜௧ିଵ. In the current period a firm adjusts its past inefficiency, 

viz., 𝜌𝑢௜௧ିଵ ൏ 𝑢௜௧ିଵ. However, in period 𝑡, it is exposed to an extra inefficiency 𝑢௜௧
∗ , which is the 

transient inefficiency. Thus the overall inefficiency for firm 𝑖 at time 𝑡 is the sum of its adjusted past 

inefficiency and the transient inefficiency, i.e., 𝑢௜௧ ൌ 𝜌𝑢௜௧ିଵ ൅ 𝑢௜௧
∗ .  

The transient inefficiency component 𝑢௜௧
∗  is assumed to follow a half normal distribution, i.e.,  

𝑢௜௧
∗ ~𝑁ାሺ0, 𝜎௨೔

ଶ ሻ, for 𝑡 ൌ 1, … , 𝑇,           (3) 

where 𝑢௜௧
∗  and 𝑢௜௦

∗  are independent of each other for a given 𝑖 and t ≠ s, and 

𝑢௜଴~𝑁ାሺ0,  𝜎௨೔
ଶ /ሺ1 െ 𝜌ଶሻሻ.                                              ( 4 ) 
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Finally, we specify  

𝜎௨೔
ଶ ൌ exp ሺ𝛿⊺𝑤௜ሻ,               (5) 

where 𝑤௜ is a ℎ ൈ 1 vector of exogenous firm-specific and time-invariant variables that are treated 

as the determinants of transient inefficiency. This is because Eሺ𝑢௜௧
∗ ሻ ൌ  ඥሺ2/𝜋ሻ𝜎௨೔

  and therefore 

anything that affects the variance parameter 𝜎௨೔
ଶ  also affects the mean of transient inefficiency. That 

is, determinants of inefficiency can be modeled via the variance parameter 𝜎௨೔
ଶ . The specification of 

𝜎௨೔
ଶ  in (5) might be confusing to the readers because in a standard panel data model with time-varying 

inefficiency, no constraint is imposed on the temporal nature of the determinants of inefficiency. 

However, in a dynamic model 𝑢௜௧ needs to be stationary. Thus, the LR inefficiency, defined as Eሺ𝑢௜௧ሻ 

(see equation (5) of AGS in page 467), cannot depend on t although it can be firm specific. For this, 

we need both 𝜌 and Eሺ𝑢௜௧
∗ ሻ to be time invariant, and that is why the determinant variables in 𝜎௨೔

ଶ  are 

firm specific but time invariant.  

Why do we specify 𝜎௨೔
ଶ  as a function of some exogenous variables instead of treating them as 

firm-specific fixed parameters as in AGS? This is because in reality firm inefficiencies may 

systematically differ across firms, and quite often we need to explain these differences in terms of 

some covariates. If these covariates are policy variables, then we can explain the impact of policy 

change on inefficiency. Put differently, any change in LR inefficiency requires a change in the policy 

variables. If there are no determinants, we can still find differences in inefficiency but these differences 

are purely random and therefore inter-firm difference in inefficiency cannot be explained. On the other 

hand, if the 𝜎௨೔
ଶ  ’s are firm-specific fixed parameters, the inter-firm efficiency differences are 

systematic but cannot be explained in terms of observed variables. Finally, we have the incidental 

parameter problem if the 𝜎௨೔
ଶ ’s are firm-specific fixed parameters which grow with N.    

3. Estimation 

3.1 The transformed model 

The complete setting of the DSF model includes equations (1)-(5). Since the inefficiency 

component 𝑢௜௧ follows an AR(1) process, the cross-period correlation between the composite errors 

comes from 𝑢௜௧′𝑠  -- not from 𝑣௜௧′𝑠 . To eliminate this autocorrelation in 𝑢௜௧ , we apply the quasi-

difference transformation to (1), that is, subtract 𝜌𝑦௜௧ିଵ  from  𝑦௜௧  and obtain the following 

transformed model  
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𝑦௜௧ ൌ 𝜌𝑦௜௧ିଵ൅ሺ𝑥௜௧ െ 𝜌𝑥௜௧ିଵሻ⊺𝛽 ൅ 𝜋଴ሺ1 െ 𝜌ሻ ൅ 𝜋ଵሾ𝑡 െ 𝜌ሺ𝑡 െ 1ሻሿ ൅ 𝜀௜௧,        (6) 

where the composite error is 𝜀௜௧ ൌ 𝑣௜௧
∗ െ 𝑢௜௧

∗   and 𝑣௜௧
∗ ൌ 𝑣௜௧ െ 𝜌𝑣௜௧ିଵ,  for 𝑡 ൌ 1, … , 𝑇௜ . Let 𝑒௜௧ ൌ

𝑦௜௧ െ 𝑥௜௧
⊺ 𝛽 െ 𝜋଴ െ 𝜋ଵ𝑡 ൌ 𝑣௜௧ െ 𝑢௜௧, then the composite error can also be represented as  

𝜀௜௧ ൌ 𝑒௜௧ െ 𝜌𝑒௜௧ିଵ,          (7) 

which has the representation of a moving averaging (MA) process of order 1. In order to implement 

the maximum likelihood method to estimate the model, it is necessary to derive the joint distribution 

of 𝜀௜ଵ, … , 𝜀௜்೔
 for each 𝑖.4 

Since in the transformed model (6) the autocorrelation between 𝜀௜௧′s only comes from the 𝑣௜௧′s 

instead of from the 𝑢௜௧′s, the marginal distribution of the composite error 𝜀௜௧ is simply a combination 

of two normal and one half-normal random variables. Let 𝑣௜. ൌ ൫𝑣௜଴, … , 𝑣௜்೔
൯

⊺
  and 𝑢௜.

∗ ൌ

൫𝑢௜ଵ
∗ , … , 𝑢௜்೔

∗ ൯
⊺
 be ሺ𝑇௜ ൅ 1ሻ ൈ 1 and 𝑇௜ ൈ 1 vectors. Then the vector of the composite errors 𝜀௜. ൌ

൫𝜀௜ଵ, … , 𝜀௜்೔
൯

⊺
 can be written as 

 𝜀௜. ൌ Q𝑣௜. െ 𝑢௜.
∗ ൌ 𝑣௜.

∗ െ 𝑢௜.
∗ ,          (8) 

where 𝑣௜.
∗ ൌ Q𝑣௜. is a 𝑇௜ ൈ 1 vector and  

 Q ൌ

⎝

⎜
⎛

െ𝜌 1 0 0 ⋯ 0
0 െ𝜌 1 0 ⋯ 0
⋮  ⋱ ⋱  ⋮
⋮   ⋱ ⋱ 0
0 ⋯ ⋯ 0 െ𝜌 1⎠

⎟
⎞

       (9) 

is a 𝑇௜ ൈ ሺ𝑇௜ ൅ 1ሻ matrix. We call the matrix Q the quasi-difference transformation matrix. 

3.2 The full maximum likelihood (FML) estimator  

Below we discuss the derivation of the likelihood function of the transformed model in (6). Let 

𝜙்ሺ∙; 𝜂, Ξሻ  and Φ்ሺ∙; 𝜂, Ξሻ  be the probability density function (pdf) and cumulative distribution 

function (cdf) of a T-dimensional normal distribution with mean 𝜂 and variance matrix Ξ. Let 𝐼் 

denote a 𝑇 ൈ 𝑇  identity matrix and 𝑂்  be a 𝑇 ൈ 1  vector of zeros. With the distributional 

assumptions on 𝑣௜. and 𝑢௜.
∗ , we are able to derive the joint distribution of 𝜀௜.. The main results are 

                                                       
4 Note that to avoid the endogeneity problem due to the presence of the lagged dependent variable in (6) we consider the 
joint pdf of the entire vector 𝜀௜ଵ, … , 𝜀௜்೔

 for each i. Alternatively, one can derive the likelihood function based on the 
untransformed model in (1), the log-likelihood function of which will be a linear function of the log-likelihood function of 
the transformed model in (6). The ML estimates will be the same. We used the transformed model in (6) because it is easier 
to estimate. 
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summarized in Theorem 1.  

  

Theorem 1: Under the model specified in (1)-(5), if 𝑣௜௧ ~𝑖. 𝑖. 𝑑. 𝑁ሺ0, 𝜎௩
ଶሻ, 𝑢௜௧

∗ ~𝑁ାሺ0, 𝜎௨೔
ଶ ሻ, and 𝜀௜௧ ൌ

ሺ𝑣௜௧ െ 𝜌𝑣௜௧ିଵሻ െ 𝑢௜௧
∗ , the vector of the composite errors 𝜀௜. of the transformed model in (6) has the 

closed skew normal (CSN)5 distribution, i.e., 

𝜀௜. ~𝐶𝑆𝑁்೔,்೔
ቀ𝑂்೔

, Σఌ, െ𝜎௨
ଶΣఌ

ିଵ, 𝑂்೔
, 𝜎௨

ଶ൫𝐼்೔
െ 𝜎௨

ଶΣఌ
ିଵ൯ቁ, 

where Σఌ ൌ 𝜎௩
ଶQQ⊺ ൅ 𝜎௨೔

ଶ 𝐼்೔
  is a 𝑇௜ ൈ 𝑇௜  matrix, Q  is defined in (9) and 𝜎௨೔

ଶ ൌ exp ሺ𝛿⊺𝑤௜ሻ . The 

corresponding joint pdf of 𝜀௜. is 

𝑓ఌ೔.
ሺ𝜀௜.; 𝜃ሻ ൌ 2்೔𝜙்೔

ሺ𝜀௜.; 𝑂்೔
, ΣఌሻΦ்೔

ሺെ𝜎௨
ଶΣఌ

ିଵ𝜀௜.;  𝑂்೔
, 𝜎௨

ଶሺ𝐼்೔
െ σ௨

ଶ Σఌ
ିଵሻሻ,    (10) 

where 𝜃 ൌ ሺ𝛽⊺, 𝜋଴, 𝜋ଵ,  𝜎௩
ଶ, 𝜌, 𝛿⊺ሻ⊺ denotes the vector of parameters. 

 

In the appendix we provide the proof and the details about the CSN random vector. With the joint 

pdf of 𝜀௜. in (10), we are able to write down the full log-likelihood function of the transformed model  

ln𝐿୊୑୐ሺ𝜃ሻ ൌ ∑ ln𝑓ఌ೔.
ሺ𝜀௜.; 𝜃ሻே

௜ୀଵ .          (11) 

The FML estimator is then defined as  

𝜃෠୊୑୐ ൌ arg max
ఏ∈஀

ln𝐿୊୑୐ሺ𝜃ሻ,         (12) 

where Θ denotes the parameter space. Under the usual regularity conditions,6  

√𝑁ሺ𝜃෠୊୑୐ െ 𝜃ሻ~𝑁ௗሺ𝑂ௗ, െ𝐻ሺ𝜃ሻିଵሻ, 

where 𝑑 is the dimension of 𝜃 and 𝐻ሺ𝜃ሻ ൌ E ቂడమ୪୬௙ሺఌ೔.;ఏሻ

డఏడఏ⊺ ቃ is the Hessian matrix. Empirically, one 

can estimate the variance of 𝜃෠୊୑୐ from the inverse of the Hessian matrix, i.e., 

𝑉ar෢ ሺ𝜃෠୊୑୐ሻ ൌ െ ቂ∑ డమ୪୬௙൫ఌො೔.;ఏ෡ూ౉ై൯

డఏడఏ⊺
ே
௜ୀଵ ቃ

ିଵ
,       (13) 

where 𝜀௜̂. is the predicted residual vector of the transformed model.  

It is worth mentioning that evaluation of (10) involves a numerical integration of a normal cdf of 

dimension 𝑇௜, which has no closed form and usually relies on Gaussian quadrature or a simulation 

approach to evaluate its value. If 𝑇௜ -- the number of time periods firm i is observed -- is large, the 

                                                       
5  See the Appendix for the definition of the closed skew-normal distribution. 
6 See section 4.5 of Bierens (1994) for the details. 
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numerical integration would be difficult and it is not possible to compute the magnitude of the 

approximation error because it needs computation of a 𝑇௜-dimensional normal cdf, which is what we 

want to avoid. Below we discuss two alternative approaches, where the first one is based on the 

likelihood function of the paired composite errors of (8) and the second is based on the approximated 

joint pdf of the 𝑇௜ ൈ 1 vector of the composite errors.  

3.3 The composite likelihood (CL) estimator 

Following Arnold and Strauss (1991) and Renard et al. (2004), we consider the CL method (which 

is also referred to as the pseudo likelihood method in the literature) to simplify the computational 

burden of the FML. The CL consists of a combination of valid likelihood objects and is usually related 

to a small subset of the data. The merit of the CL method is that it reduces the computational difficulty 

so that it is possible to estimate high dimensional and complex models. We illustrate the main idea of 

the CL approach below.  

Let f (Y; 𝜛) be a density function, then the usual ML estimator is obtained by maximizing the full 

likelihood f (Y; 𝜛) over 𝜛. If Y can be partitioned into three pieces, say Ya, Yb, and Yc, where Yb or Yc 

may be an empty set, then the conditional density f(Ya|Yb; 𝜛) or the marginal density if Yb is an empty 

set, continues to depend on at least part of the true parameter 𝜛. Given a collection of such partitions, 

the conditional densities can be multiplied together to yield a composite likelihood, whose maximum 

over 𝜛 can be referred to as the composite ML estimator (see Cox and Reid (2004) and Mardia et. al 

(2009)). The CL approach suggests that one may replace the joint likelihood function by any suitable 

product of conditional or marginal densities. More discussions on the consistency and asymptotic 

normality of the CL estimator can be found in Arnold and Strauss (1991) and Renard et al. (2004). 

For the transformed model in (6), the CL function is much easier to evaluate than the full 

likelihood function. However, this convenience may come at the cost of losing efficiency as a result of 

not fully incorporating the cross-period sample information. Given that it is unclear how much 

efficiency we lose due to using the pairwise composite likelihood (PCL) approach or the marginal 

composite likelihood (MCL) approach, we investigate this issue by comparing the finite sample 

performances of the PCL, MCL and FML estimators using Monte Carlo simulations in section 4. 

Below we illustrate the CL approach to estimate the transformed model and focus our discussion 

on the pairwise composite likelihood approach. Recall that 𝜀௜௧ ൌ ሺ𝑣௜௧ െ 𝜌𝑣௜௧ିଵሻ െ 𝑢௜௧
∗  , so the 

composite errors have an MA(1) representation due to the quasi-difference transformation. The 

correlation matrix of the vector 𝜀௜. has the structure 
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Corrሺ𝜀௜.ሻ ൌ

⎝

⎜⎜
⎛

1 𝜌௜
∗ 0 ⋯ 0

𝜌௜
∗ 1 𝜌௜

∗  0
0 𝜌௜

∗ ⋱  ⋮ 
⋮   ⋱ 𝜌௜

∗

0 0 ⋯ 𝜌௜
∗ 1 ⎠

⎟⎟
⎞

,                         (14) 

where the correlation coefficient 𝜌௜
∗ ൌ െ ఘఙೡ

మ

ቂఙೡ
మሺଵାఘమሻାఙೠ೔

మ ቃ
 is due to the correlation between the 𝑣௜௧

∗ ᇱs, 

which are normal random variables. It is worth mentioning that the pair (𝜀௜௧, 𝜀௜௦) is independent if 

|𝑡 െ 𝑠| ൐ 1 and thus their joint pdf is the product of their marginal pdfs. The joint pdf of an arbitrary 

pair ሺ𝜀௜௧, 𝜀௜௦ሻ has the following two forms 

𝑓ఌ೔೟,ఌ೔ೞ
ሺ𝜀௜௧, 𝜀௜௦; 𝜃ሻ ൌ ൜

 𝑓ଵሺ𝜀௜௧, 𝜀௜௦; 𝜃ሻ,        if |𝑡 െ 𝑠| ൐ 1;
 𝑓ଶሺ𝜀௜௧, 𝜀௜௦; 𝜃ሻ,        if |𝑡 െ 𝑠| ൌ 1;

         (15) 

where 𝑓ଵሺ𝜀௜௧, 𝜀௜௦; 𝜃ሻ  is the product of the marginal pdfs of 𝜀௜௧  and 𝜀௜௦  when |𝑡 െ 𝑠| ൐ 1  and 

𝑓ଶሺ𝜀௜௧, 𝜀௜௧ାଵ; 𝜃ሻ is the joint pdf of two consecutive 𝜀௜௧′s. Both the marginal pdf and joint pdf can be 

treated as special cases of Theorem 1 when 𝑇௜ ൌ 1 and 𝑇௜ ൌ 2, respectively. We summarize the main 

results in Corollaries 1 and 2 below. 

Corollary 1: Suppose  𝑣௜௧
∗ ~𝑁ሺ0, 𝜎௩∗

ଶ ሻ and 𝑢௜௧
∗ ~𝑁ାሺ0, 𝜎௨೔

ଶ ሻ, where 𝜎௩∗
ଶ ൌ 𝜎௩

ଶሺ1 ൅ 𝜌ଶሻ and 𝑣௜௧
∗  and 

𝑢௜௧
∗  are independent of each other. Define 𝜀௜௧ ൌ 𝑣௜௧

∗ െ 𝑢௜௧
∗ . Then 𝜀௜௧ has the following closed skew-

normal distribution 

𝜀௜௧~𝐶𝑆𝑁ଵ,ଵ ൬0, 𝜎௩∗
ଶ ൅ 𝜎௨೔

ଶ ,
ିఙೠ೔

ఙೡ∗
మ ାఙೠ೔

మ , 0,
ఙೡ∗

మ

ఙೡ∗
మ ାఙೠ೔

మ ൰,             (16) 

which has the pdf 

𝑓ఌ೔೟
ሺ𝜀௜௧; 𝜃ሻ ൌ ଶ

ටఙೡ∗
మ ାఙೠ೔

మ
𝜙ଵ ቌ

ఌ೔೟

ටఙೡ∗
మ ାఙೠ೔

మ
ቍ Φଵ ቌെ

ఙೠ೔

ఙೡ∗

ఌ೔೟

ටఙೡ∗
మ ାఙೠ೔

మ
ቍ.          (17) 

Equation (17) gives the marginal pdf of 𝜀௜௧. It follows from (14) that when the lag difference 

|𝑡 െ 𝑠| ൐ 1, the joint pdf of 𝜀௜௧ and 𝜀௜௦ is  

𝑓ଵሺ𝜀௜௧, 𝜀௜௦; 𝜃ሻ ൌ 𝑓ఌ೔೟
ሺ𝜀௜௧; 𝜃ሻ𝑓ఌ೔ೞ

ሺ𝜀௜௦; 𝜃ሻ,       (18) 

where 𝑓ሺ𝜀௜௧; 𝜃ሻ is given in (17). 

For 𝑡 ൌ 2, … , 𝑇௜ െ 1, define 𝜀௜௧ ൌ ሺ𝜀௜௧, 𝜀௜௧ାଵሻ⊺ as a 2 ൈ 1 vector of the composite errors from 

consecutive periods. In a manner similar to (8), 𝜀௜௧ can be represented as  

𝜀௜௧ ൌ Q𝑣௜௧ െ 𝑢௜௧
∗ ൌ 𝑣௜௧

∗ െ 𝑢௜௧
∗ ,            (19) 
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where 𝑣௜௧ ൌ ሺ𝑣௜௧ିଵ, 𝑣௜௧, 𝑣௜௧ାଵሻ⊺, 𝑣௜௧
∗ ൌ ሺ𝑣௜௧

∗ , 𝑣௜௧ାଵ
∗ ሻ⊺, 𝑢௜௧

∗ ൌ ሺ𝑢௜௧
∗ , 𝑢௜௧ାଵ

∗ ሻ⊺ and 

Q ൌ ൬
െ𝜌 1 0
0 െ𝜌 1൰.             (20) 

Note that since Var൫𝑣௜௧൯ ൌ 𝜎௩
ଶ𝐼ଷ  and 𝑢௜௧

∗ ~𝑁ାሺ𝑂ଶ, 𝜎௨೔
ଶ 𝐼ଶ, ሻ , each element in 𝑣௜௧  and 𝑢௜௧

∗   is 

independent across time. The joint pdf of 𝜀௜௧ is given in Corollary 2. 

 

Corollary 2: Under the same assumptions of Theorem 1, the 2 ൈ 1 vector 𝜀௜௧ defined in (19) has the 

following closed skew-normal distribution, 

𝜀௜௧~𝐶𝑆𝑁ଶ,ଶ ቀ𝑂ଶ, Σఌ, െ𝜎௨೔
ଶ Σఌ

ିଵ, 𝑂ଶ, 𝜎௨೔
ଶ ൫𝐼ଶ െ 𝜎௨೔

ଶ Σఌ
ିଵ൯ቁ,     (21) 

where Σఌ ൌ 𝜎௩
ଶQ Q⊺ ൅ 𝜎௨೔

ଶ 𝐼ଶ is a 𝑇௜ ൈ 𝑇௜ matrix and Q is defined in (20). The corresponding joint 

pdf of 𝜀௜௧ is 

𝑓ఌ೔೟
൫𝜀௜௧; 𝜃൯ ൌ 4𝜙ଶሺ𝜀௜௧; 0, ΣఌሻΦଶሺെ𝜎௨೔

ଶ Σఌ
ିଵ𝜀௜௧;  0, 𝜎௨೔

ଶ ሺ𝐼ଶ െ 𝜎௨೔
ଶ Σఌ

ିଵሻሻ.    (22) 

 

By Corollary 2, we have 𝑓ଶሺ𝜀௜௧, 𝜀௜௦; 𝜃ሻ ൌ 𝑓൫𝜀௜௧; 𝜃൯. Therefore, it follows from (18) and (22) that the 

pairwise composite log-likelihood function for all combinations of possible pairs for firm 𝑖 is 

ln𝐿௜
୔େ୐ሺ𝜃ሻ ൌ ∑ ∑ ln𝑓ఌ೔೟,ఌ೔ೞ

ሺ𝜀௜௧, 𝜀௜௦; 𝜃ሻ்೔
௦ୀ௧ାଵ

்೔ିଵ
௧ୀଵ    

  ൌ ∑ ln𝑓ଵሺ𝜀௜௧, 𝜀௜௧ାଵ; 𝜃ሻ ൅ ∑ ∑ ln𝑓ଶሺ𝜀௜௧, 𝜀௜௦; 𝜃ሻ்೔
௦ୀ௧ାଶ

்೔ିଵ
௧ୀଵ

்೔ିଵ
௧ୀଵ ,   (23) 

where the summation contains 𝑇௜ሺ𝑇௜ െ 1ሻ/2  factors, and 𝑓ଵሺ𝜀௜௧, 𝜀௜௧ାଵ; 𝜃ሻ  and 𝑓ଶሺ𝜀௜௧, 𝜀௜௦; 𝜃ሻ  are 

defined in (15) and (18). More specifically, the pdf 𝑓ଵሺ𝜀௜௧, 𝜀௜௧ାଵ; 𝜃ሻ is given in (17) and (18), and the 

pdf of 𝑓ଶሺ𝜀௜௧, 𝜀௜௦; 𝜃ሻ  is given in (22). Thus, the pairwise composite log-likelihood for the whole 

sample is  

ln𝐿୔େ୐ሺ𝜃ሻ ൌ ∑ ln𝐿௜
୔େ୐ே

௜ୀଵ ሺ𝜃ሻ.        (24) 

The maximum PCL estimator is defined as  

𝜃෠୔େ୐ ൌ arg max
ఏ∈஀

ln𝐿୔େ୐ሺ𝜃ሻ. 

Under the usual regularity conditions the PCL estimator is consistent and asymptotically normally 

distributed (Varin and Vidoni (2005)), i.e.,  

√𝑁൫𝜃෠୔େ୐ െ 𝜃൯~𝑁ሺ𝑂ௗ, 𝐻୔େ୐ሺ𝜃ሻିଵ𝐽୔େ୐ሺ𝜃ሻ𝐻୔େ୐ሺ𝜃ሻିଵሻ, 

where 𝐻୔େ୐ሺ𝜃ሻ ൌ E ൤
డమ୪୬௅೔

ౌిైሺఏሻ

డఏడఏ⊺ ൨ and 𝐽୔େ୐ሺ𝜃ሻ ൌ E ൤
డ୪୬௅೔

ౌిైሺఏሻ

డఏ

డ୪୬௅೔
ౌిైሺఏሻ

డఏ⊺ ൨. Empirically, 𝐻௉஼௅ሺ𝜃ሻ and 
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𝐽௉஼௅ሺ𝜃ሻ can be estimated by their sample counterparts 

𝐻෡୔େ୐൫𝜃෠୔େ୐൯ ൌ ଵ

ே
∑ డమ୪୬௅೔

ౌిై൫ఏ෡ౌిై൯

డఏడఏ⊺
ே
௜ୀଵ   

and 

𝐽መ୔େ୐൫𝜃෠୔େ୐൯ ൌ ଵ

ே
∑ డ୪୬௅೔

ౌిై൫ఏ෡ౌిై൯

డఏ

డ୪୬௅೔
ౌిై൫ఏ෡ౌిై൯

డఏ⊺
ே
௜ୀଵ . 

Therefore, it follows that the variance of 𝜃෠୔େ୐ can be estimated by  

𝑉𝑎𝑟෢ ൫𝜃෠୔େ୐൯ ൌ ൤∑ డమ୪୬௅೔
ౌిై൫ఏ෡ౌిై൯

డఏడఏ⊺
ே
௜ୀଵ ൨

ିଵ

൤∑ డ୪୬௅೔
ౌిై൫ఏ෡ౌిై൯

డఏ

డ୪୬௅೔
ౌిై൫ఏ෡ౌిై൯

డఏ⊺
ே
௜ୀଵ ൨  

ൈ ൤∑ డమ୪୬௅೔
ౌిై൫ఏ෡ౌిై൯

డఏడఏ⊺
ே
௜ୀଵ ൨

ିଵ

.       (25) 

3.4 The quasi-maximum likelihood (QML) estimator 

The main objective of the composite likelihood method discussed in section 3.3 is to avoid high-

dimensional integration problems when we have panel data with moderately long time periods. Under 

the same framework, if we use the marginal density of 𝜀௜௧ to formulate the likelihood function, we 

obtain the marginal composite likelihood,7 which treats 𝜀௜௧ and 𝜀௜௦ as independent. In this section, 

we consider using the copula approach to link the marginal densities of 𝜀௜௧ and 𝜀௜௦, so that the cross 

period dependence between 𝜀௜௧ ’s can be captured by the copula function. Since the copula-based 

likelihood function is an approximation of the true likelihood, we call it the quasi-likelihood function. 

We now discuss how to use the QML approach to estimate the transformed model in (6).  

According to Sklar’s theorem (Sklar, 1959, and Schweizer and Sklar, 1983), the joint distribution 

of 𝜀௜. can be constructed with the given marginal distribution of 𝜀௜௧, denoted as 𝑓௧ሺ𝜀௜௧; 𝜃ሻ, for 𝑡 ൌ

1, … , 𝑇௜  and an appropriate copula function 𝐶ሺ∙ሻ , which binds the marginal distributions with the 

given dependent structure. In this case, we have the correctly specified marginal model under the 

assumptions and have approximated a joint distribution based on the copula function. It is worth 

mentioning that if we use the marginal density of 𝜀௜௧ to formulate the marginal composite likelihood, 

then the MCL estimator is exactly the same as the QML estimator when the product copula is used.8   

Recall that the composite error of the transformed model is 𝜀௜௧ ൌ 𝑣௜௧
∗ െ 𝑢௜௧

∗ . Corollary 1 shows 

that the marginal distribution of 𝜀௜௧ follows a CSN distribution, which has the pdf given in equation 

                                                       
7 The log-likelihood function of the MCL is ln𝐿୑େ୐ሺ𝜃ሻ ൌ ∑ ∑ ln𝑓ሺ𝜀௜௧; 𝜃ሻ,்೔

௧ୀଵ
ே
௜ୀଵ  where 𝑓ሺ𝜀௜௧; 𝜃ሻ is given in (17). 

8 We thank an anonymous referee for pointing this out.  
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(16). Its cdf is  

𝐹ሺ𝜀௜௧ሻ ൌ 2Φଶ ൭ቀ
𝜀௜௧
0 ቁ ; ቀ0

0
ቁ , ቆ

𝜎௩∗
ଶ ൅ 𝜎௨೔

ଶ 𝜎௨೔

𝜎௨೔
1

ቇ൱.           (26) 

The correlation coefficient matrix for 𝜀௜. is given in (14).  

According to Sklar’s theorem, the joint distribution of 𝜀௜. can be written as  

𝐹൫𝜀௜ଵ, … , 𝜀௜்೔
; 𝜃൯ ൌ 𝐶ሺ𝐹ଵሺ𝜀௜ଵ; 𝜃ሻ, … , 𝐹்൫𝜀௜்೔

; 𝜃൯; 𝜆௜ሻ,         (27) 

where 𝜆௜ is the parameter of the copula function. The corresponding pdf is  

𝑓൫𝜀௜ଵ, … , 𝜀௜்೔
; 𝜃൯ ൌ 𝑐൫𝐹ଵሺ𝜀௜ଵ; 𝜃ሻ, … , 𝐹்൫𝜀௜்೔

; 𝜃൯; 𝜆௜൯𝑓ଵሺ𝜀௜ଵ; 𝜃ሻ … 𝑓 ൫𝜀௜்೔
; 𝜃൯,       (28) 

where 𝑐ሺ∙ሻ ൌ డ೅೔஼ሺ∙ሻ

డிభሺఌ೔భ;ఏሻ…డி೅೔
ቀఌ೔೅೔

;ఏቁ
.  

    From our earlier discussion, we know that the correlation between 𝜀௜௧ and 𝜀௜௧ିଵ comes purely 

from the correlation between 𝑣௜௧
∗  and 𝑣௜௧ିଵ

∗ , which are normally distributed. In other words, if 𝑣௜௧
∗  

and 𝑣௜௧ିଵ
∗  were independent of each other, then 𝜀௜௧ and 𝜀௜௧ିଵ would also be independent. Therefore, 

the correlation of 𝐹௧ሺ𝜀௜௧; 𝜃ሻ and 𝐹௧ିଵሺ𝜀௜௧ିଵ; 𝜃ሻ is likely to come from 𝑣௜௧
∗  and 𝑣௜௧ିଵ

∗ , and we expect 

their correlation matrix to have a structure similar to (14).9  

In order to impose the prior information about the correlation structure, we use the Gaussian copula 

to construct the quasi-likelihood function. The Gaussian copula implies a symmetric correlation 

structure on its marginals, and its variance-covariance matrix has a structure similar to the original 

vector 𝜀௜. in (14). More specifically, the correlation matrix Λ௜ of the Gaussian copula should have 

the structure  

Λ௜ ൌ

⎝

⎜
⎛

1 𝜆௜ 0 ⋯ 0
𝜆௜ 1 𝜆௜  0
0 𝜆௜ ⋱  ⋮ 
⋮   ⋱ 𝜆௜
0 0 ⋯ 𝜆௜ 1 ⎠

⎟
⎞

,            (29) 

where 𝜆௜ is the correlation coefficient between 𝐹௧ሺ𝜀௜௧ሻ and 𝐹௧ିଵሺ𝜀௜௧ିଵሻ. We expect 𝜆௜ and 𝜌௜
∗ to 

have a one-to-one correspondence, i.e., 𝜆௜ ൌ 𝜆ሺ𝜌௜
∗ሻ. However, the explicit form of the function 𝜆ሺ∙ሻ 

is complicated and almost intractable. We, therefore, use a polynomial10of 𝜌௜
∗ to approximate the true 

𝜆௜. In order to ensure that 𝜆௜ is bounded between െ1 and 1, we assume 

 𝜆ሺ𝜌௜
∗ሻ ൌ

ୣ୶୮ቀ∑ ఊೕఘ೔
∗ೕ಻

ೕసబ ቁିଵ

ୣ୶୮ቀ∑ ఊೕఘ೔
∗ೕ಻

ೕసబ ቁାଵ
 ,        (30) 

                                                       
9  One can consider this as an assumption instead of a conjecture. This is suggested by an anonymous referee. 
10 By the Weierstrass approximation theorem, every continuous function defined on a closed interval can be uniformly 
approximated as closely as desired by a polynomial function. Empirically, one may choose the order J using an information 
criterion such as Schwarz (1978). We thank an anonymous referee for raising this issue. 
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where 𝐽  is the order of the polynomial function of 𝜌௜
∗.  Therefore, under the Gaussian copula 

specification we have the quasi-joint distribution  

𝐶ீ൫𝐹ଵሺ𝜀௜ଵ; 𝜃ሻ, … , 𝐹்൫𝜀௜்೔
; 𝜃൯; Λ௜൯ ൌ Φ்೔

ሺΦିଵሺ𝐹ଵሺ𝜀௜ଵ; 𝜃ሻሻ, … , Φିଵሺ𝐹்൫𝜀௜்೔
; 𝜃൯ሻ; Λ௜ሻ,  

where Φ்೔
ሺ∙ሻ is the cdf of a 𝑇௜-variate standard normal distribution and Φሺ∙ሻ is the cdf of a

 univariate standard normal distribution. The corresponding Gaussian copula density is  

𝑐ீ൫𝐹ଵሺ𝜀௜ଵ; 𝜃ሻ, … , 𝐹்೔
൫𝜀௜்೔

; 𝜃൯; Λ௜൯ ൌ ଵ

|ஃ೔|భ/మ exp ሺെ ଵ

ଶ
𝜂௜

⊺ሺΛ௜
ିଵ െ 𝐼ሻ𝜂௜ሻ,       (31) 

where 𝜂௜ ൌ ሺΦିଵሺ𝐹ଵሺ𝜀௜ଵ; 𝜃ሻሻ, … , Φିଵሺ𝐹்೔
൫𝜀௜்೔

; 𝜃൯ሻሻ⊺ . According to (28), the log quasi-likelihood 

function is  

 ln𝐿୕୑୐ሺ𝜃ሻ ൌ ∑ ln𝐿௜
୕୑୐ሺ𝜃ሻே

௜ୀଵ ൌ ∑ ln𝑓൫𝜀௜ଵ, … , 𝜀௜்೔
; 𝜃, 𝜆௜൯ே

௜ୀଵ  

 ൌ ∑ ቄെ ଵ

ଶ
ln |Λ௜| െ ଵ

ଶ
𝜂௜

⊺ሺΛ௜
ିଵ െ 𝐼ሻ𝜂௜ ൅ ∑ ln𝑓௧ሺ𝜀௜௧; 𝜃ሻ்೔

௧ୀଵ ቅே
௜ୀଵ .  (32) 

The corresponding quasi-maximum likelihood (QML) estimator can then be defined as  

𝜃෠ொெ௅ ൌ arg max
ఏ∈஀

ln𝐿୕୑୐ሺ𝜃ሻ. 

Since the quasi-likelihood function is an approximation of the true likelihood function, the sandwich 

standard error is suggested. The remaining statistical inference is quite standard in the QML literature.  

From a numerical point of view, the QML approach is easier to implement and has less 

computational burden than the PCL approach. This is because the PCL estimator considers all joint 

distributions of 𝜀௜௧ and 𝜀௜௦ for all 𝑡 ് 𝑠 while the QML estimator captures the time dependence by 

a copula function. Thus the QML estimator might fail to track the dynamic adjustment process or the 

true AR coefficient. 

3.5 Prediction of the technical (in)efficiency  

Once the ML, PCL, MCL or QML estimator for the parameters is obtained, we proceed to predict 

both the technical efficiency (TE) index and technical inefficiency. Under the specification of (2), the 

technical inefficiency term 𝑢௜௧ follows an AR(1) process and the iterative substitution gives 

𝑢௜௧ ൌ 𝜌𝑢௜௧ିଵ ൅ 𝑢௜௧
∗ ൌ ∑ 𝜌௦𝑢௜௧ି௦

∗ ൅ 𝜌௧𝑢௜଴
௧ିଵ
௦ୀ଴ ,             (33) 

which suggests that 𝑢௜௧  has a moving average representation. One may predict 𝑢௜௧  using 

{𝑢௜଴, 𝑢௜ଵ
∗ , … , 𝑢௜௧

∗  }. Let Ω௜ ൌ ሼ𝜀௜ଵ, … , 𝜀௜்ሽ  denote firm 𝑖 ’s information set of 𝜀௜௧  for 𝑡 ൌ 1, … , 𝑇 . 

Then prediction of inefficiency can be based on the conditional expectation 

Eሺ𝑢௜௧|Ω௜ሻ ൌ 𝜌Eሺ𝑢௜௧ିଵ|Ω௜ሻ ൅ Eሺ𝑢௜௧
∗ |Ω௜ሻ              (34a) 
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 ൌ ∑ 𝜌௦Eሺ𝑢௜௧ି௦
∗ |Ω௜ሻ ൅ 𝜌௧௧ିଵ

௦ୀ଴ Eሺ𝑢௜଴|Ω௜ሻ.             (34b) 

Similarly, TE௜௧ ൌ Eሺexpሺെ𝑢௜௧ሻ |Ω௜ሻ can also be represented as 

TE௜௧ ൌ Eሺexpሺെ ∑ 𝜌௦𝑢௜௧ି௦
∗ െ 𝜌௧𝑢௜଴

௧ିଵ
௦ୀ଴ ሻ |Ω௜ሻ             (35a) 

ൌ Eሾexpሺെ ∑ 𝜌௦𝑢௜௧ି௦
∗௧ିଵ

௦ୀ଴ ሻ|Ω௜ሿ ∙ Eሾexpሺെ𝜌௧𝑢௜଴ሻሿ.              (35b) 

The second equality is due to Eሾexpሺെ𝜌௧𝑢௜଴ሻ|Ω௜ሿ ൌ Eሾexpሺെ𝜌௧𝑢௜଴ሻሿ, since 𝑢௜଴ is independent of all 

𝑢௜௧
∗ ’s and the information set Ω௜ contains no information about 𝑢௜଴. However, it is worth mentioning 

that  

Eሾexpሺെ ∑ 𝜌௦𝑢௜௧ି௦
∗௧ିଵ

௦ୀ଴ ሻ|Ω௜ሿ ് ∏ Eሾexpሺെ𝜌௦𝑢௜௧ି௦
∗ ሻ|Ω௜ሿ௧ିଵ

௦ୀ଴ .     (36) 

Because of this, we cannot decompose TE as the product of the past TE (denoted as 𝑇𝐸௜௧
𝐏) and transient 

TE (denoted as 𝑇𝐸௜௧
𝐓 ), where 𝑇𝐸௜௧

𝐏 ൌ Eሺexpሺെ𝜌𝑢௜௧ିଵሻ |Ω௜ሻ  and 𝑇𝐸௜௧
𝐓 ൌ Eሺexpሺെ𝑢௜௧

∗ ሻ |Ω௜ሻ . This is 

because  

TE௜௧ ൌ Eሺexpሺെ𝜌𝑢௜௧ିଵ െ 𝑢௜௧
∗ ሻ |Ω௜ሻ  

് Eሺexpሺെ𝜌𝑢௜௧ିଵሻ |Ω௜ሻ ൈ Eሺexpሺെ𝑢௜௧
∗ ሻ |Ω௜ሻ ൌ 𝑇𝐸௜௧

𝐏 ൈ 𝑇𝐸௜௧
𝐓. 

The inequality arises because we use some overlapping information to predict 𝑢௜௧
∗  and 𝑢௜௧ିଵ and TE 

is a nonlinear function of 𝑢௜௧
∗  and 𝑢௜௧ିଵ. Given the results in (34b) and (35b), the remaining question 

is how to predict 𝑢௜௧
∗ , expሺെ𝑢௜௧

∗ ሻ, 𝑢௜଴ and expሺെ𝑢௜଴ሻ given the information Ω௜. 

Recall that from equation (8), we have 𝜀௜. ൌ Q𝑣௜. െ 𝑢௜.
∗  , where 𝑄𝑣௜.~𝑁்ሺ𝑂்,  𝜎௩

ଶQQ⊺ሻ  and 

𝑢௜.
∗~𝑁்

ା൫𝑂், 𝜎௨೔
ଶ 𝐼்൯.  Similar to Colombi et al. (2014), it can be shown that 𝑢௜.

∗|𝜀௜.  follows a 

multivariate truncated normal distribution, i.e.,  

𝑢௜.
∗|𝜀௜.~𝑁்

ାሺΨ௜𝜀௜., Γ௜ሻ,                

where Ψ௜ ൌ െ𝜎௨೔
ଶ Σఌ೔

ିଵ , 11  Γ௜ ൌ ൬Σ௩
ିଵ ൅ ଵ

ఙೠ೔
మ 𝐼்൰

ିଵ

 , Σఌ೔
ൌ Σ௩ ൅ 𝜎௨೔

ଶ 𝐼்  and Σ௩ ൌ 𝜎௩
ଶQQ⊺ . The 

corresponding moment generating function (mgf) of 𝑢௜.
∗|𝜀௜. is  

E൫𝑒௥⊺௨೔.
∗
ห𝜀௜.൯ ൌ exp ቀ𝑟⊺Ψ௜ε௜. ൅ ଵ

ଶ
𝑟⊺Γ௜𝑟ቁ∙

஍೅ሺ୻೔௥ାஏ೔க೔.; ை೅, ୻೔ሻ

஍೅ሺஏ೔க೔.; ை೅, ୻೔ሻ
.        (37) 

Therefore, it follows from (35b) and (37) that the TE can be predicted by 

TE௜௧ ൌ Eሺexpሺെ𝑢௜௧ሻ |Ω௜ሻ ൌ E൫𝑒௥⊺௨೔.
∗
ห𝜀௜.൯ ∙ Eሾexpሺെ𝜌௧𝑢௜଴ሻሿ,       (38) 

                                                       
11  For the cost frontier, the composite error vector is 𝜀௜. ൌ Q𝑣௜. ൅ 𝑢௜.

∗ . We still have the same result 𝑢௜.
∗|𝜀௜.~𝑁்

ାሺΨ௜𝜀௜., Γ௜ሻ, 
where Ψ௜ ൌ 𝜎௨೔

ଶ Σఌ೔
ିଵ and the remaining matrices are defined as before.  



 

16 

where 𝑟 ൌ ሺെ𝜌௧ିଵ, െ𝜌௧ିଶ, … , െ𝜌, െ1, 0, … ,0ሻ⊺  is a 𝑇 ൈ 1  vector and 𝑢௜.
∗ ൌ ሺ𝑢௜ଵ

∗ , … , 𝑢௜்
∗ ሻ⊺ . 

Moreover, (38) suggests that the transient TE is  

TE௜௧
𝐓 ൌ E൫𝑒ି௨೔೟

∗
ห𝜀௜.൯ ൌ exp ቀെℓ௧

⊺Ψ௜ε௜. ൅ ଵ

ଶ
ℓ௧

⊺Γ௜ℓ௧ቁ∙
஍೅ሺ୻೔ℓ೟ାஏ೔க೔.; ை೅, ୻೔ሻ

஍೅ሺஏ೔க೔.; ை೅, ୻೔ሻ
,      (39) 

where ℓ௦, sൌ 1, … , 𝑇, denotes the 𝑠୲୦ column of the identity matrix 𝐼். When 𝑟 ൌ ℓ௧, we have the 

transient TE, E൫𝑒ି௨೔೟
∗

ห𝜀௜.൯ , at time 𝑡 . It is worth mentioning that prediction of TE௜௧
𝐓   also requires 

evaluating the 𝑇-dimensional normal cdf Φ்ሺΓ௜𝑟 ൅ Ψ௜ε௜.; 𝑂், Γ௜ሻ. Moreover, using the mgf in (38) 

one can also obtain the conditional expectation Eሺ𝑢௜.
∗|𝜀௜.ሻ for predicting the transient inefficiency  

Eሺ𝑢௜.
∗|𝜀௜.ሻ ൌ 

ப୉൬𝑒௥⊺௨೔.
∗

ฬ𝜀௜.൰

డ௥
อ

௥ୀ଴

 ൌ Ψ௜𝜀௜. ൅ Γ௜
஍೅

∗ ሺஏ೔க೔.; ை೅, ୻೔ሻ

஍೅ሺஏ೔க೔.; ை೅, ୻೔ሻ
,              (40) 

where Φ்
∗ ሺΨ௜ε௜.; 𝑂், Γ௜ሻ ൌ డ஍೅ሺஏ೔க೔.; ை೅, ୻೔ሻ

డஏ೔க೔.
  is a 𝑇 ൈ 1  vector. It can be seen that prediction of 

Eሺ𝑢௜.
∗|𝜀௜.ሻ  is more complicated than the prediction of the technical efficiency E൫𝑒௥⊺௨೔.

∗
หε௜.൯ . This is 

because evaluating (40) requires additional computation of the vector of the derivatives of the 𝑇 -

dimensional normal cdf Φ்ሺΨ௜ε௜.; 𝑂், Γ௜ሻ.  

Now consider the conditional expectation 

Eሺ𝑢௜௧
∗ |𝜀௜ଵ, 𝜀௜ଶ, … , 𝜀௜்ሻ ൌ Eሺെ𝜀௜௧ ൅ 𝑣௜௧ െ 𝜌𝑣௜௧ିଵ|𝜀௜ଵ, 𝜀௜ଶ, … , 𝜀௜்ሻ  

 ൌ െ𝜀௜௧ ൅ Eሺ𝑣௜௧|𝜀௜ଵ, 𝜀௜ଶ, … , 𝜀௜்ሻ െ 𝜌Eሺ𝑣௜௧ିଵ|𝜀௜ଵ, … , 𝜀௜்ሻ  

 ൌ െ𝜀௜௧ ൅ Eሺ𝑣௜௧|𝜀௜௧, 𝜀௜௧ାଵሻ െ 𝜌Eሺ𝑣௜௧ିଵ|𝜀௜௧ିଵ, 𝜀௜௧ሻ,  

where the last equality is due to the fact that only 𝜀௜௧ and 𝜀௜௧ାଵ contain information about 𝑣௜௧. The 

above result implies that we can concentrate on the information about ሼ𝜀௜௧ିଵ, 𝜀௜௧, 𝜀௜௧ାଵሽ to predict 𝑢௜௧
∗  

and expሺെ𝑢௜௧
∗ ሻ, instead of using the whole Ω௜. In other words,  

Eሺ𝑢௜௧
∗ |𝜀௜ଵ, 𝜀௜ଶ, … , 𝜀௜்ሻ ൌ Eሺ𝑢௜௧

∗ |𝜀௜௧ିଵ, 𝜀௜௧, 𝜀௜௧ାଵሻ,      (41) 

which is mainly due to the AR(1) specification of 𝑢௜௧ . More specifically, (41) suggests that the 

integration of the cdf in equation (38) can be reduced to the three-dimension case and thus we may 

focus on the results in (38)-(40) for the special case when 𝑇 ൌ 3. Replacing 𝑟 ൌ ሺ0, 𝜏, 0ሻ⊺ in the 

𝑇 ൌ 3  case of (38), we can obtain the moment generating function 𝑚௨೔೟
∗ |ஐ೔

ሺ𝜏ሻ ൌ

E൫𝑒ఛ௨೔೟
∗

ห𝜀௜௧ିଵ, 𝜀௜௧, 𝜀௜௧ାଵ൯. We summarize the main results in Theorem 2. 

Theorem 2: Let the composite error 𝜀௜௧ ൌ 𝑣௜௧
∗ െ 𝑢௜௧

∗ , where 𝑣௜௧
∗ ൌ 𝑣௜௧ െ 𝜌𝑣௜௧ିଵ, 𝑣௜௧~𝑖. 𝑖. 𝑑. 𝑁ሺ0, 𝜎௩

ଶሻ, 

𝑢௜௧
∗ ~𝑁ା൫0, 𝜎௨೔

ଶ ൯  and 𝑢௜଴~𝑁ା ቀ0, 𝜎௨೔
ଶ /ሺ1 െ 𝜌ଶሻቁ . Let 𝜀௜̃௧ ൌ ሺ𝜀௜௧ିଵ,  𝜀௜௧, 𝜀௜௧ାଵሻ⊺,  Ψ௜ ൌ െ𝜎௨೔

ଶ 𝛴ఌ೔
ିଵ , 

𝑠௜௧ ൌ Ψ௜𝜀௜̃௧,   𝛤௜ ൌ ൬𝛴௩
ିଵ ൅ ଵ

ఙೠ೔
మ 𝐼ଷ൰

ିଵ

 , 𝛴ఌ೔
ൌ 𝛴௩ ൅ 𝜎௨೔

ଶ 𝐼ଷ , and 𝛴௩ ൌ 𝜎௩
ଶQQ⊺ , where Q  is a 3 ൈ 4 
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matrix defined as in (9). The moment generating function of 𝑢௜௧
∗ |Ω௜ is  

𝑚௨೔೟
∗ |ஐ೔

ሺ𝜏ሻ ൌ E൫𝑒ఛ௨೔೟
∗

ห𝜀௜̃௧൯＝exp ቀ𝑟⊺𝑠௜௧ ൅ ଵ

ଶ
𝑟⊺Γ௜𝑟ቁ∙

஍యሺ୻೔௥ା௦೔೟; ை೅, ୻೔ሻ

஍యሺ௦೔೟; ை೅, ୻೔ሻ
,    (42) 

where 𝑟 ൌ ሺ0, 𝜏, 0ሻ⊺. 

(i ) If 𝜏 ൌ െ1 in (42), we obtain the prediction of transient TE, E൫𝑒ି௨೔೟
∗

ห𝜀௜̃௧൯. 

(ii) If ℓଷ ൌ ሺ0, 1, 0ሻ, then the transient inefficiency is  

Eሺ𝑢௜௧
∗ |𝜀௜̃௧ሻ ൌ 𝑚′௨೔೟

∗ |ஐ೔
ሺ0ሻ ൌ 

ப୉൬𝑒ఛ௨೔೟
∗

ฬ𝜀௜̃௧൰

డఛ
อ

ఛୀ଴

ൌ ℓଷ ቀ𝑠௜௧ ൅ Γ௜
஍య

∗ ሺ௦೔೟; ைయ, ୻೔ሻ

஍యሺ௦೔೟; ைయ, ୻೔ሻ
ቁ,    (43) 

where Φଷ
∗ሺ𝑠௜௧; 𝑂ଷ, 𝛤௜ሻ ൌ డ஍యሺ௦೔೟; ை೅, ௰೔ሻ

డ௦೔೟
 is a 3 ൈ 1 vector.  

(iii) Further, the moment generating function of 𝑢଴ is  

𝑚௨బ
ሺ𝑟ሻ ൌ Eሺ𝑒௥௨బሻ ൌ 2 ∙ exp ൬

௥మఙೠ೔
మ

ଶሺଵିఘమሻ
൰ ∙ Φ ൬

௥ఙೠ೔

ඥଵିఘమ൰           (44) 

with the first moment  

𝑚௨బ
ᇱ ሺ0ሻ ൌ Eሺ𝑢଴ሻ ൌ ට

ଶఙೠ೔
మ

గሺଵିఘమሻ
.                  (45) 

It is worth mentioning that the predictions of the (in)efficiency for the first and the last periods are 

different from the remaining periods because only information from two periods is used. In other words, 

we should use Eሺ𝑢௜ଵ
∗ |𝜀௜ଵ, 𝜀௜ଶሻ  and Eሺ𝑢௜்

∗ |𝜀௜்ିଵ, 𝜀௜்ሻ  for the first and last periods. In (38)-(40) by 

letting 𝜀௜̃ଵ ൌ ሺ𝜀௜ଵ, 𝜀௜ଶሻ⊺  and 𝑟 ൌ ሺ𝜏, 0ሻ⊺  and by letting 𝜀௜்̃ ൌ ሺ𝜀௜்ିଵ, 𝜀௜்ሻ⊺  and 𝑟 ൌ ሺ0, 𝜏ሻ⊺ 

respectively, we can obtain the moment generating functions for the two special cases when 𝑇 ൌ 2. 

The derivation of them is straightforward and we do not repeat them here. Once we obtain the estimates 

of Eሺ𝑢௜௧
∗ |𝜀௜̃௧ሻ  for 𝑡 ൌ 1, … , 𝑇  and Eሺ𝑢଴ሻ , we are able to predict Eሺ𝑢௜௧|Ω௜ሻ  using (34b). In other 

words, the conditional expectation Eሺ𝑢௜௧|Ω௜ሻ can be simplified as  

Eሺ𝑢௜௧|Ω௜ሻ ൌ ∑ 𝜌௦Eሺ𝑢௜௧ି௦
∗ |𝜀௜௧ି௦ିଵ, 𝜀௜௧ି௦, 𝜀௜௧ି௦ାଵሻ ൅ 𝜌௧௧ିଵ

௦ୀ଴ Eሺ𝑢௜଴ሻ,          (46) 

where the terms on the right hand side can be evaluated using (43) and (45). 

Under the AR(1) assumption of 𝑢௜௧ ൌ 𝜌𝑢௜௧ିଵ ൅ 𝑢௜௧
∗  and 𝑢௜௧

∗ ~𝑁ାሺ0, 𝜎௨೔
ଶ ሻ, the LR inefficiency is 

E𝑢௜௧ ൌ
୉௨೔೟

∗

ଵିఘ
ൌ ටଶ

గ

ఙೠ೔

ଵିఘ
,            (47) 

which can be predicted by replacing the parameters with their estimates. Note that if 𝜎௨೔
 is a constant, 

that is, there are no-firm specific and time-invariant determinants, the LR inefficiency will be a 

constant.  

Similar to prediction of long-run inefficiency, we may also estimate the long-run TE. Since the 
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LR inefficiency is 
୉௨೔೟

∗

ଵିఘ
, LR efficiency can be expressed as E(expሺെ𝑢௜௧

∗ /1 െ 𝜌ሻሻ, which is predicted 

from  

TE௜௧
𝐋𝐑 ൌ ሺEሾexpሺെ𝑢௜௧

∗ ሻሿሻ
భ

భషഐ ൌ ൬2 ⋅ exp ቀଵ

ଶ
𝜎௨೔

ଶ ቁ ⋅ Φ൫െ𝜎௨೔
൯൰

భ
భషഐ

      (48) 

by replacing the parameters with their estimates. 

4. Monte Carlo experiments 

In this section, we conduct some Monte Carlo experiments to examine finite sample performances 

of the FML, PCL, QML and MCL estimators. Our focus is on examining efficiency loss in using the 

PCL, QML and MCL methods instead of the FML method.  

In our experiments, the data-generating process (DGP) is specified as 

𝑦௜௧ ൌ 𝛽ଵ𝑥ଵ,௜௧ ൅ 𝛽ଶ𝑥ଶ,௜௧ ൅ 𝜋଴ ൅ 𝜋ଵ𝑡 ൅ 𝑣௜௧ െ 𝑢௜௧,                 (49) 

where 𝑢௜௧ ൌ 𝜌𝑢௜௧ିଵ ൅ 𝑢௜௧
∗ .  The exogenous variables are drawn from normal distributions: 

𝑥ଵ,௜௧~𝑁ሺ5, 1.5ଶሻ and  𝑥ଶ,௜௧~𝑁ሺ3,1ሻ. The symmetric random component is normally distributed, i.e.,  

𝑣௜௧~𝑖. 𝑖. 𝑑. 𝑁ሺ0, 𝜎௩
ଶሻ. The parameters in the data generating process are 𝛽ଵ ൌ 0.3, 𝛽ଶ ൌ 0.2, 𝜋଴ ൌ 1, 

𝜋ଵ ൌ 0.5 and 𝜎௩
ଶ ൌ 0.1. The transient inefficiency is generated from 𝑢௜௧

∗ ~𝑁ାሺ0, 𝜎௨
ଶሻ, where 𝜎௨೔

ଶ ൌ

expሺ𝛿଴ ൅ 𝛿ଵ𝑤௜ሻ and 𝛿଴ ൌ െ0.5  and  𝛿ଵ ൌ 0.1 . The exogenous variable 𝑤௜  is drawn from 

𝑤௜~𝑁ሺ0, 2ଶሻ. Finally, we set 𝜌 ൌ 0.7 and consider the following combinations of 𝑇 and 𝑁 in our 

simulations : 𝑁 ൌ ሼ25, 50, 100ሽ and 𝑇 ൌ ሼ5, 10, 15ሽ.12  

   The main objective of the experiment is to compare the performances of the FML, PCL, QML and 

MCL estimators. The comparison is based on the relative biases and relative RMSEs, which are defined 

as  

Relative Biasሺ𝐴/𝐵ሻ ൌ
୆୧ୟୱ൫ఏ෡ಲ൯

୆୧ୟୱ൫ఏ෡ಳ൯
 and Relative RMSEሺ𝐴/𝐵ሻ ൌ

ୖ୑ୗ୉൫ఏ෡ఽ൯

ୖ୑ୗ୉൫ఏ෡ಳ൯
,        (50) 

where the subscripts A and B can be FML, PCL, QML or MCL, and 𝜃෠஺ (𝜃෠୆) refers to the estimator 

obtained by method A (B). Relative BiasሺA/Bሻ ൐ 1 suggests that the bias of the estimator 𝜃෠୅ is 

larger than that of the estimator 𝜃෠୆, so 𝜃෠୆ is better in terms of bias. The relative efficiency of the 

estimators 𝜃෠஺  and 𝜃෠஻  is evaluated by their relative RMSEs. That is, Relative RMSEሺA/Bሻ ൐ 1 

implies that the estimator 𝜃෠஻ is more efficient than 𝜃෠஺. 

                                                       
12  The simulation results for 𝜌 ൌ 0.35 are similar. These results are available upon request from the authors. 
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For the FML estimation, the multivariate normal cdf is evaluated using the Geweke-Hajivassiliou-

Keane (GHK) simulator (Geweke (1989), Hajivassiliou and McFadden (1998), and Keane (1994)), 

which is applicable if the dimension of the cdf is 20 or less. In our experiment, the maximum dimension 

of the normal cdf is 14, since T in the untransformed model is 15. We use linear approximation in the 

QML approach, so that 𝐽 ൌ 2 in (30)13 and thus  

𝜆ሺ𝜌௜
∗ሻ ൌ

ୣ୶୮ሺఊబାఊభఘ೔
∗ሻିଵ

ୣ୶୮൫ఊబାఊభఘ೔
∗൯ାଵ

.          (51) 

We report the biases, MSEs, the Relative Biases and Relative RMSEs for 𝜌 ൌ 0.7 in Tables 2-

5. It is clear from Tables 2 and 3 that biases and MSEs of the QML, PCL, MCL and FML estimators 

are quite small in magnitude. MSEs of all the estimators also decrease when we increase 𝑁 or T, but 

there is no clear pattern in the biases.  

Tables 3 and 4 provide some comparisons of the four estimators in terms of Relative Biases and 

Relative RMSEs, and they are marked in bold if their values are greater than 1. Panel A of Table 4 

compares the biases of the PCL and FML estimators. Among the eight parameters in our model, the 

PCL estimators of 𝛿଴ and 𝜋଴ tend to have relatively larger biases compared to the FML estimators 

when the sample is small. This may be due to the cross period information not being fully incorporated 

in the objective function. 𝜋଴ plays the role of the intercept term in the transformed model in (6), thus 

underestimation of 𝜋଴  will be accompanied by underestimation of the intercept 𝛿଴  in 𝜎௨೔
ଶ ൌ

expሺ𝛿଴ ൅ 𝛿ଵ𝑤௜ሻ, and vice versa. There are 39 out of the 72 Relative Biases14 (about 54.2% of the 

parameters in all cases) that are greater than 1, which indicates that the PCL estimator works as well 

as the FML estimator, on average.  

Panel B of Table 4 compares the biases of the QML and FML estimators. About 66.7% (ൌ 48/72) 

of the QML parameters have larger biases than the FML estimators, which is not a surprising result. In 

the QML estimation, only the marginal pdf is correctly specified and the cross-period dependence is 

imposed into the likelihood function by the copula function. However, if we further compare the values 

of Relative Biases in panels A and B, we find that most of the Relative Biases in panel B have absolute 

values less than 3, which suggests that the Gaussian copula can effectively capture the cross-period 

dependence. The results in panel C are consistent with our findings from panels A and B. For 𝛿଴ and 

𝜋଴, the QML estimators also have smaller biases than the PCL estimators, but this is not necessarily 

                                                       
13 In our simulation we consider 𝐽 ൌ 2 and 𝐽 ൌ 3 and found that adding one extra nuisance parameter in the QML 
estimation does not lead to significant improvement of the estimators in terms of their biases and MSEs. Because of this, 
we decided to use 𝐽 ൌ 2 in our current study. 
 
14 There are nine combinations of N and T and 8 parameters in the model.    
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true for the remaining parameters. Finally, panel D compares the MCL and FML estimators. About 

70.8% (ൌ 51/72) of the MCL parameters have larger biases than the FML estimators. Moreover, panel 

D also shows that the MCL estimators of 𝜋଴, 𝜌 and 𝜎௩
ଶ have relatively larger biases compared to 

the other three estimators. To sum up, we find that the performances of the four estimators can be 

ranked as follows: FML ≻ PCL ≻ QML ≻ CML, where ≻ means better in terms of bias.  

Panel A of Table 5 shows the Relative RMSEs of the PCL and FML estimators. We find that 

RMSEs of only 𝛿଴ are relatively large and all the other RMSEs are less than 1.007. This indicates 

that the PCL estimation has good performance in terms of RMSEs. In panel B, only 5 out of 72 

parameters are less than 1, which shows that QML is not as efficient as the FML estimator; however, 

all RMSEs are quite close to one. Together with our findings from the Relative Biases in panel B of 

Table 4, we conclude that the loss of efficiency in QML estimation does not seem to be a serious 

problem. Panel C compares the PCL and QML estimation. Only the RMSEs of 𝛿଴  and three 

parameters have values greater than 1, which also suggest that the PCL estimator of 𝛿଴ is less efficient 

than both the FML and QML estimators, but this is not necessarily true for the remaining parameters. 

Panel D compares the RMSEs of the MCL and FML estimators, and all values are slightly larger than 

one, which indicates that the loss of efficiency is not serious. An interesting result is that the MCL 

estimator seems to perform better than the QML estimator in terms of RMSE. We think that this is 

because the MCL has correctly specified marginal likelihood, but the QML has approximated 

likelihood.  

All four likelihood-based estimators have some advantages compared with each other, and there 

are some tradeoffs in the FML, PCL, QML and MCL estimators. From a theoretical point of view, one 

may expect that the FML estimation is the most efficient and performs uniformly better than the other 

two approaches, since it fully utilizes the sample information and the parameter estimates are obtained 

from the true joint pdf of the sample. However, our simulation does not provide evidence showing that 

the FML estimator is uniformly better (in terms of biases and RMSEs of all parameters) than the other 

three estimators. This might be due to the approximation error of the numerical integration of the 

multivariate normal cdf in equation (10). Unfortunately, we cannot quantify the magnitude of the 

approximation error of the numerical integration in our simulation, since there is no closed form 

expression for the multivariate normal cdf.15 On the contrary, for the PCL approach we only need to 

evaluate a bivariate normal cdf, which simplifies the numerical computation. The likelihood function 

of the PCL comes from the paired sample; the joint pdf is correctly specified but the cross period 

                                                       
15 The multivariate normal cdf is evaluated using a numerical approach. See Genz and Bretz (2009) for detailed discussion 
on this. 
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information is not fully incorporated into the objective function. The main advantage of the PCL 

estimator is that we only need to deal with two-dimensional integration no matter how long the time 

span is. The FML and PCL estimators are equivalent to each other in the special case when 𝑇=2 in the 

transformed model. The other two alternatives are QML and MCL estimators, where the former uses 

an approximated joint pdf while the latter correctly specifies marginal pdf but totally ignores the cross-

period information. The biases and RMSEs of the QML and PCL estimators of 𝜋଴ and 𝜌 in Tables 

2 and 3 show that there are some trade-offs between them. Compared with the MCL, the QML 

estimator has a smaller bias since the cross-period information is used, but a larger RMSE due to the 

approximated joint pdf.   

For the QML method, we only need to evaluate the marginal pdf of the transformed model, where 

the cross-period information is incorporated into the likelihood function through the copula function. 

Therefore, the QML has a smaller computational burden compared to FML and PCL, but the cost is 

that we only obtain the approximate likelihood function, instead of the true one. Moreover, if the 

product copula is used, then we have a marginal composite likelihood (Chandler and Bate, 2007), 

which permits inference only on marginal parameters. In our case, the information from the cross-

period dependence is not incorporated.  

Based on the simulation results, we conclude that both PCL and QML estimators are reliable in 

terms of both bias and RMSE. The loss of efficiency does not seem to be serious in our simulation 

results. We also conclude that the FML is the most efficient approach, PCL ranks second, QML ranks 

third and MCL is the last. As a rule of thumb, when the time span of the sample is not large or the 

likelihood function is not too complicated, the FML estimation is recommended for an empirical study. 

However, when the time span is moderately long in the sense that the multivariate normal cdf is 

difficult to evaluate, we recommend using the PCL or the MCL method. The QML may be used when 

the time span is extremely long in the sense that there are too many paired combinations of the sample 

(i.e., lim
்೔→ஶ

𝐶ଶ
்೔ combinations) to be considered.  

5. Empirical Application  

For an empirical application we use the Finnish electricity distribution data from 2008-2014. 

We used a balanced panel on 73 distribution operators (firms) to estimate the DSF model. The total 

number of firm-years observed is 511. The GMM method and the four likelihood-based methods 

discussed earlier are used in the application. The data is made available by the Finnish energy authority 

and is used for regulatory purposes.  
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Electricity distribution companies are natural monopolies and are therefore regulated in every 

country. Cost of distribution is higher for companies that are inefficient, ceteris paribus. The objective 

of regulation is to make sure that distribution companies operate efficiently so that the cost of 

inefficiency is not passed to the customers in terms of higher prices. Thus, it is customary to have price 

reviews by the regulator at regular intervals (usually every 4 years). According to regulation theory, 

“cost-of-service” pricing typically does not provide an incentive for electricity distribution companies 

to minimize cost (Laffont and Tirole, 1993). Without some form of regulation or incentives, companies 

in a monopoly situation will typically use their market power and set prices above marginal cost, 

resulting in a welfare loss. The role of the regulator is to prevent this. However, to do so the regulator 

needs to know what the minimum (efficient) cost level (the benchmark) for a company should be. The 

reported cost of an inefficient company is likely to be more than the minimum cost, ceteris paribus. 

Stochastic frontier is one of the approaches that is used to estimate the benchmark.16 Using such a 

benchmark, the regulator can find out what the company’s costs ought to be and can use carrot and 

sticks so that the company attains the benchmark (minimum) cost gradually over time.  

 In Finnish cost benchmark studies (for example, Kuosmanen 2012 and many of his other papers 

with various coauthors) the dependent variable is total operating cost (OPEX) adjusted for inflation 

and the independent variables are outputs (total energy delivered, number of customers served, and 

network length). OPEX includes operating costs, depreciation and interruption costs (in 1,000€). 

Energy is the amount of electricity distributed (GWh). Network is total network length of the different 

voltage levels (km), and number of customers is the number of users. We use outage cost (cost of 

service disruption) as a determinant of transient inefficiency. These variables are not chosen arbitrarily 

but are used by the Finnish energy authority for benchmarking purposes. The summary statistics of the 

variables are given in Table 6. 

 Following the literature on Finnish regulatory models, we estimate a cost relationship using the 

model 

𝑐௜௧ ൌ 𝜋଴ ൅ 𝛽ଵ𝑥ଵ,௜௧ ൅ 𝛽ଶ𝑥ଶ,௜௧ ൅ 𝛽ଷ𝑥ଷ,௜௧ ൅ 𝜋ଵ𝑡 ൅ 𝑣௜௧ ൅ 𝑢௜௧.         (52) 

However, the inefficiency term is assumed to follow an AR(1) process, i.e., 𝑢௜௧ ൌ 𝜌𝑢௜௧ିଵ ൅ 𝑢௜௧
∗ , 

                                                       
16 The German regulators require companies to estimate their inefficiency using SF and data envelopment analysis (DEA). 
In other countries such as the UK, the regulator decides on a case by case basis whether to use the DEA or SF method. In 
Finland the regulator uses the StoNED approach (Kuosmanen 2012). In Norway, DEA is currently used to determine the 
benchmark cost. In Finland, the Energy Market Authority (EMV) has applied the DEA method since 1998. The study by 
Syrjänen, Bogetoft and Agrell (2006) recommended using SFA in addition to the DEA. During 2008-2011 the efficiency 
improvement targets set by EMV were based on the arithmetic average of the firm-specific DEA and SFA efficiency 
estimates. 
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𝑢௜௧
∗ ~𝑁ାሺ0, 𝜎௨೔

ଶ ሻ and 𝜎௨೔
ଶ ൌ exp ሺ𝛿଴ ൅ 𝛿𝑤௜ሻ, where 𝑤௜ is the log of mean outage cost. We take the 

mean of outage cost by operator to make it time invariant. The three covariates are logarithms of 

network length (lnlength), energy distributed (lnenergy), and number of customers (lnnumberuser) and 

c is the log of OPEX (lnopex). Since (52) is a cost model, we used ൅𝑢௜௧ to indicate that inefficiency 

increases cost instead of െ𝑢௜௧  used in the production function.17  In a regulatory context, the 𝑥 

variables are usually referred to as cost drivers. The time trend variable in (52) allows for a shift in the 

cost frontier. In particular, it shows that the cost is changed by 1 100   percent over time, ceteris 

paribus. On the other hand, given that  𝑢௜௧ ൌ 𝜌𝑢௜௧ିଵ ൅ 𝑢௜௧
∗  and 𝑢௜௧ାଵ ൌ 𝜌ଶ𝑢௜௧ିଵ ൅ 𝜌𝑢௜௧

∗ ൅ 𝑢௜௧ାଵ
∗ , the 

catch-up (movement towards or away from the frontier) can be estimated from 𝑢௜௧ାଵെ𝑢௜௧ ൌ 𝜌ሺ𝜌 െ

1ሻ𝑢௜௧ିଵ ൅ ሺ𝜌 െ 1ሻ𝑢௜௧
∗ ൅ 𝑢௜௧ାଵ

∗ . Since 0 ൏ 𝜌 ൏ 1, the first two terms are negative and the last term is 

positive. Therefore, going forward, a firm gets closer to the frontier if 𝑢௜௧ାଵെ𝑢௜௧ ൏ 0. Given that past 

inefficiency cannot be changed, a regulator can change future inefficiencies of firms by offering 

incentives to reduce future transient inefficiencies. 

To use the unrestricted AGS specification and estimate the model in (52) in quasi-transformed 

form using GMM, we need 73 𝜌 and 73 𝜆 parameters together with  3 𝛽 and 1 𝜋 parameters. 

Since the transformed model contains 𝑐௜௧ିଵ  for which 𝑐௜௧ିଶ  is used as the IV, 2N  observations 

cannot be used in GMM. Thus the GMM can be quite costly both in terms of number of parameters to 

be estimated and the number of observations used. To make the AGS model comparable to the SF 

models in which we assume a constant 𝜌  and a half normal distribution of 𝑢௜௧
∗   so that Eሺ𝑢௜௧ሻ ൌ

ඥ2/𝜋𝜎௨೔
/ሺ1 െ 𝜌ሻ, where 𝜎௨೔

ଶ ൌ exp ሺ𝛿଴ ൅ 𝛿ଵ𝑤௜ሻ,18 we also specify 𝜆௜ ൌ Eሺ𝑢௜௧
∗ ሻ as an exponential 

function of 𝑤௜, i.e., exp ሺ𝛿଴ ൅ 𝛿ଵ𝑤௜ሻ in the AGS model. Note that in using GMM we are not assuming 

any distributional assumptions other than assuming a parametric form of Eሺ𝑢௜௧
∗ ሻ. Furthermore, we use 

squares and lags of the 𝑥௜௧ variables as IVs for 𝑐௜௧ିଵ so that the number of observations in the GMM 

as well as in FML, PCM, MCL and QML are ( 1)N T   (𝑁 observations for the first year cannot be 

used because lags of the variables appear in the transformed model).  

Parameter estimates of the GMM and the four likelihood based models are reported in Table 7. 

First, note that the AR(1) coefficient 𝜌  is statistically significant in all models, although their 

numerical values differ across models. The estimated value of 𝜌  is quite high in all the models, 

thereby meaning that past inefficiency plays an important role in the overall inefficiency of the Finnish 

                                                       
17 Alternatively, one can multiply both sides of (52) by െ1 and use a production function approach. 
18 In principle one could think of 𝜎௨೔

ଶ  as fixed parameters, but this would involve estimating 73 parameters. The idea of 
using determinants of inefficiency is to avoid this heavy parameterization by assuming 𝜎௨೔

ଶ ൌ exp ሺ𝛿଴ ൅ 𝛿𝑤௜ሻ so that 
there are only 2 parameters. In a SF model we can identify both 𝛿଴ and 𝜋଴.  
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electricity distribution operators. The operators that are inefficient in the past year are likely to be 

inefficient in the current year even if transient inefficiency is low. That is, there is a high degree of 

persistency in the estimates of inefficiency coming from past.  

Since we are using a log-linear model, the   coefficients are elasticities of the cost drivers 

on the OPEX. Elasticity of energy delivered is found to be insignificant in all models. That is, after 

controlling for network length and number of customers, energy delivered is not a significant cost 

driver. The elasticity associated with the number of users is the highest in all models, followed by the 

elasticity of length of the network. These elasticities are quite similar across all the models. The 

coefficient of the time trend variable is found to be negative (technical progress) in all the models, 

although the magnitude of it differs across models. The AGS (GMM) model shows frontier shift 

(technical change) at the rate of 7.82% per annum (the highest). Frontier shift is the lowest (1.04% per 

annum) when the MCL method is used and is in between (3.94%) for the FML method. In electricity 

distribution, a 7.82% technical change is considered to be too high.  

In Table 8 we report the mean values of transient inefficiency, TE and the catch-up rate, for 

each year for all the methods. Note that in GMM we can only estimate the mean of transient 

inefficiency, Eሺ𝑢௜௧
∗ ሻ, which is assumed to be of the form exp ሺ𝛿଴ ൅ 𝛿ଵ𝑤௜ሻ and is time-invariant. The 

overall mean of it is 0.4447 with a standard deviation of 0.0098. Thus the transient efficiency for the 

industry as a whole is exp( 0.4447)  = 0.6410. However, the LR inefficiency, Eሺ𝑢௜௧
∗ ሻ/ሺ1 െ ρሻ, is 

5.99 and is too high to be taken seriously by the regulator and the operators. The mean transient 

inefficiencies from the other methods are in the range of 6% to 12%. The mean transient efficiency is 

80% or more. The transient inefficiency (efficiency) is more or less stable over time. Also note that 

these estimates are quite similar in the FML, PCL, MCL, and QML methods.  

In Table 8 we also report the catch-up rate estimated from 𝑢௜௧െ𝑢௜௧ିଵ ൌ ሺ𝜌 െ 1ሻ𝑢௜௧ିଵ ൅ 𝑢௜௧
∗ . 

Since   is quite high, the ሺ𝜌 െ 1ሻ𝑢௜௧ିଵ ൏ 0 part of the catch-up part contributes little (about 10%). 

A negative value of it indicates a movement towards the frontier. However, since 𝑢௜௧
∗  is positive, the 

catch-up can be positive. A negative catch-up is guaranteed only if 𝑢௜௧
∗ ൏ ሺ1 െ 𝜌ሻ𝑢௜௧ିଵ. Given that 

past inefficiency cannot be changed, the regulator can use carrots and sticks to bring down transient 

inefficiency to ensure that the operators move towards the frontier. Thus, the estimate of transient 

inefficiency can be an important piece of information for the regulator in promoting future efficiency. 

Although for some operators the catch-up rate is negative, the average catch-up rate is found to be 

positive in all the years, where the average is calculated using both positive and negative catch-up rates.  

In our likelihood based methods, we are able to estimate the (overall) inefficiency itu  from 
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Eሺ𝑢௜௧|Ω௜ሻ ൌ ∑ 𝜌௦E൫𝑢௜௧ି௦
∗ ห𝜀௜,௧ି௦ିଵ, 𝜀௜,௧ି௦, 𝜀௜,௧ି௦ାଵ൯ ൅ 𝜌௧E𝑢௜଴

௧ିଵ
௦ୀ଴  using the formulas in (43) and (46). 

The mean values of these by year are also reported in Table 8. We find an increasing trend in the 

estimated overall inefficiency. Again there is close agreement in the estimates from all 4 approaches. 

In the same table, we also report estimates of (overall) efficiency, Eሺ𝑒ି௨೔೟|𝜀௜.ሻ, which are found to 

decrease over time. This is predicted by all 4 methods. 

In addition to reporting mean (in)efficiency estimates by year, we present kernel density plots 

of them by year. In Figure 1 we report the kernel density of transient inefficiency 

Eሺ𝑢௜௧
∗ |𝜀௜௧ିଵ, 𝜀௜௧, 𝜀௜௧ାଵሻ  using the formula in (43) from the FML method. Plots for the other three 

method are quite similar and are not reported. It can be seen that the distribution of transient 

inefficiency for the years 2008, 2010 and 2011 are more spread than the other years. That is, in those 

years some operators were much more inefficient than others. 

In Figure 2 we report density plots of the estimates of (overall) inefficiency Eሺ𝑢௜௧|𝜀௜.ሻ obtained 

from Eሺ𝑢௜௧|Ω௜ሻ ൌ ∑ 𝜌௦E൫𝑢௜௧ି௦
∗ ห𝜀௜,௧ି௦ିଵ, 𝜀௜,௧ି௦, 𝜀௜,௧ି௦ାଵ൯ ൅ 𝜌௧E𝑢௜଴

௧ିଵ
௦ୀ଴  using the formulas in (43) and 

(46). We can interpret it as a measure of overall inefficiency which is composed of two parts, 1itu   

and 𝑢௜௧
∗  . Since each part is non-negative, the overall inefficiency will be higher than the transient 

inefficiency. The density plots show that the range of Eሺ𝑢௜௧|𝜀௜.ሻ is much larger for the years 2011-

2014, meaning that the past inefficiency part 1itu  is bigger for those years.   

To examine transient efficiency across alternative methods, we report in Figure 3 

E൫𝑒ି௨೔೟
∗

ห𝜀௜.൯  using the formula in (39) for all four methods. It is clear from the plots that (i) the 

estimates are very similar across alternative methods, and (ii) most of the operators are quite efficient. 

The same pattern is observed for the estimates of (overall) efficiency Eሺ𝑒ି௨೔೟|𝜀௜.ሻ, plots of which are 

reported in Figure 4 for all 4 methods. 

It is clear from the above density plots that the results are quite similar across all four models. 

Therefore the choice of the method should depend on which one is the easiest to implement. Since the 

PCL is the easiest to estimate, we recommend its use in empirical applications. 

6. Conclusion 

In this paper, we proposed a panel SF model that allows a dynamic adjustment in inefficiency. The 

adjustment is modeled via an AR(1) process, which means that the overall inefficiency is decomposed 

into a past inefficiency component adjusted by the speed of adjustment (the AR(1) coefficient), and a 

transient inefficiency component that is explained by some exogenous time-invariant covariates. In 

addition to the full maximum likelihood estimation, we propose three other likelihood-based 
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approaches, viz., the pairwise/marginal composite likelihood functions and the quasi-maximum 

likelihood function, as alternatives to the FML method. In the PCL method, we focus on the lower 

dimension of the joint distribution and formulate the pairwise composite likelihood by considering all 

possible pairs of the subsample. The MCL estimation uses only the marginal distribution and ignores 

the information about time dependence. Alternatively, in the QML method we evaluate the marginal 

pdf of the transformed model and then incorporate the cross period dependence by using a copula 

function. These alternatives are useful when the true likelihood function is difficult to evaluate or the 

time span of the observed data is long. We compare the finite sample performances of the PCL, QML, 

MCL and FML estimators from Monte Carlo simulations and find that the PCL, QML and MCL 

estimators perform quite well and there are some trade-offs among them. We also find that the issue 

of efficiency loss does not seem to be serious, and thus the methods that are easier to implement are 

recommended to be used. 

We provide an empirical application of our DSF model to a panel of 73 Finnish electricity 

distribution companies observed during 2008-2014. The data we used is provided by the Finnish 

regulator and is used for regulatory purposes. The variables used are agreed upon by both the regulator 

and the distribution companies. Our results show technical progress (downward shift of cost, ceteris 

paribus) but no catch-up (movement towards the frontier) for most of the companies. Because of the 

high value of the AR(1) coefficient, the past inefficiency played an important role in the estimate of 

overall inefficiency. On the contrary, high value of the AR(1) coefficient lowers the catch-up. Like the 

simulation results, we find that (in)efficiency results as well as parameters of the cost relationship are 

quite similar across all four methods. This shows that the simulation results complement the results 

from the empirical application. 

  In our present DSF model, we did not include firm-specific random/fixed effects in the frontier 

function. It is a straightforward extension of our model to include the random effects. The 

aforementioned likelihood-based approaches can be easily combined with the simulated likelihood 

approach, which integrates out the random effects by simulation. On the other hand, if the fixed effects 

are included in the model, as in Belotti and Ilardi (2017), then one may need to apply either first 

differences or within transformations first to eliminate the fixed effects. We leave these extensions for 

the future.    
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Appendix: 

Definition: Consider 𝑝 ൒ 1, 𝑞 ൒ 1, 𝜋 ∈ 𝑅௣, 𝜅 ∈ 𝑅௤ , an arbitrary 𝑞 ൈ 𝑝   matrix Γ , and positive 
matrices Σ  and  Δ  of dimensions 𝑝 ൈ 𝑝  and 𝑞 ൈ 𝑞 , respectively. A p-dimensional closed skew-
normal random vector 𝑦 with parameters 𝜋, Σ, Γ, 𝜅 and Δ, denoted as 𝑦~𝐶𝑆𝑁௣,௤ሺ𝜋, Σ, Γ, 𝜅, Δሻ, has 

the probability density function 

𝑓௬ሺ𝑦ሻ ൌ 𝐵𝜙௣ሺ𝑦, 𝜋, ΣሻΦ௤ሺΓሺ𝑦 െ 𝜋ሻ; 𝜅, Δሻ,                            (a1) 

and the cumulative distribution function 

𝐺௣,௤ሺ𝑦ሻ ൌ 𝐶Φ௣ା௤ ൤ቀ
𝑦
0ቁ ; ቀ

𝜋
𝜅ቁ , ൬ Σ െΣΓ୘

െΓΣ Δ ൅ ΓΣΓ୘൰൨,                    (a2) 

where 𝑦 ∈ 𝑅௣, and 𝐵ିଵ ൌ Φ௤ሺ0; 𝜅, Δ ൅ ΓΣΓ୘ሻ. Moreover, the moment generating function (mgf) of 

𝑦 is   

𝑀௬ሺ𝑟ሻ ൌ
஍೜ሺ୻ஊ௥;఑,୼ା୻ஊ୻⊺ሻ

஍೜ሺ଴;఑,୼ା୻ஊ୻⊺ሻ
e௥⊺గାభ

మ
௥⊺ஊ୰, where 𝑟 ∈ 𝑅௣.              (a3) 

More details about the closed skew-normal distribution can be found in Gonzalez-Farias, Dominguez-
Molina and Gupta (hereafter GDG, 2004).  

 
Proof of Theorem 1: 

Let Σ௩ ൌ  QQ୘𝜎௩
ଶ, Σ௨ ൌ 𝜎௨

ଶ𝐼்೔
 and Σఌ ൌ Σ௩ ൅ Σ௨. The mgf’s of 𝑣௜.

∗ and 𝑢௜.
∗  are 

𝑚௩∗ሺ𝑟ሻ ൌ 𝐸൫𝑒௥⊺௩೔⋅
∗
൯ ൌ 𝑒

భ
మ

௥⊺ஊೡ௥  

and  

𝑀௨∗ሺ𝑟ሻ ൌ 𝐸൫𝑒௥⊺௨೔⋅
∗

൯ ൌ 𝑒
భ
మ

௥⊺ஊೠ௥ ∙
஍೅೔

 ሺஊೠ௥; ை೅೔
,ஊೠሻ

஍೅೔
ሺை೅೔

; ை೅೔
,ஊೠሻ

. 

Therefore, the mgf of 𝜀௜. is 

𝑀ఌ೔.
ሺ𝑟ሻ ൌ 𝐸൫𝑒௥⊺௩೔∙

∗
൯ ∙ 𝐸൫𝑒ି௥⊺௨೔∙

∗
൯ ൌ 𝑒

భ
మ

௥⊺ሺஊೡାஊೠሻ௥ ∙
஍೅೔

 ሺିஊೠ௥; ை೅೔
,ஊೠሻ

஍೅೔
ሺை೅೔

;ை೅೔
,ஊೠሻ

. 

By the definition of CSN, the parameters in equation (a3) are 𝜋 ൌ 𝑂்೔
, Σ ൌ Σ௩ ൅ Σ௨ ൌ Σఌ, and 𝜅 ൌ

𝑂்೔
. Moreover, ΓΣ ൌ െΣ௨ implies Γ ൌ െ Σ௨Σఌ

ିଵ and ∆ ൅ ΓΣΓ⊺ ൌ Σ௨ implies ∆ൌ Σ௨ െ

Σ௨Σఌ
ିଵΣ௨. Therefore, we have 

𝜀௜∙~𝐶𝑆𝑁்೔∙்೔
ሺ𝑂்೔ , Σఌ , െΣ௨Σఌ

ିଵ, 𝑂்೔ , Σ௨ െ Σ௨Σఌ
ିଵΣ௨) 

and a further simplification gives 

𝐶𝑆𝑁்೔,்೔
ቀ𝑂்೔

, Σఌ, െ𝜎௨
ଶΣఌ

ିଵ, 𝑂்೔
, 𝜎௨

ଶ൫𝐼்೔
െ 𝜎௨

ଶΣఌ
ିଵ൯ቁ.               Q.E.D. 
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Table 1: Econometric specifications of the dynamic stochastic frontier models 

Setting AGS (2000) Tsionas(2006) Emvalomatis (2012) Amsler et. al (2014) This paper 

Time trend Linear trend No No No Linear trend 

Random 
error 𝑣௜௧ 

• 𝐸ሺ𝑣௜௧ሻ ൌ 0 for all 𝑖, 𝑡. 
• No distribution 

assumption on 𝑣௜௧. 

𝑣௜௧~𝑖. 𝑖. 𝑑. 𝑁ሺ0, 𝜎௩
ଶሻ 𝑣௜௧~𝑖. 𝑖. 𝑑. 𝑁ሺ0, 𝜎௩

ଶሻ 𝑣௜௧~𝑖. 𝑖. 𝑑. 𝑁ሺ0, 𝜎௩
ଶሻ 𝑣௜௧~𝑖. 𝑖. 𝑑. 𝑁ሺ0, 𝜎௩

ଶሻ 

Inefficiency 
𝑢௜௧ 

•𝑢௜௧ ൌ ሺ1 െ 𝜌௜ሻ𝑢௜௧ିଵ ൅ 𝑢௜௧
∗

•𝐸ሺ𝑢௜௧
∗ |Ω௜௧ିଵሻ ൌ 𝜆௜ ൒ 0.  

•No distribution 
assumption on 𝑢௜௧

∗. 
 
 

•For 𝑡 ൌ 1, 

ln 𝑢௜ଵ ൌ
௭೔೟

౐ఊ

ଵିఘ
൅ 𝑢௜ଵ

∗, 

where 

𝑢௜ଵ
∗~𝑁ሺ0, ఙೠ

మ

ଵିఘ
ሻ 

•For 𝑡 ൌ 2 … 𝑇, 

ln 𝑢௜௧ ൌ 𝑧௜௧
୘𝛾 ൅

𝜌ln𝑢௜,௧ିଵ ൅ 𝑢௜௧
∗ , 

where 
𝑢௜௧

∗ ~ 𝑖. 𝑖. 𝑑. 𝑁ሺ0, 𝜎௨
ଶሻ

 

•Use the inverse of the 
logistic function for the 
transformation  

•𝑠௜௧ ൌ ln ቀ ୘୉೔೟

ଵି୘୉೔೟
ቁ ൌ

ln ቀ ௘షೠ೔೟

ଵି௘షೠ೔೟
ቁ,  

where 
𝑠௜௧~𝑁ሺ𝜌଴ ൅ 𝜌 ∙ 𝑠௜,௧ିଵ, 𝜎௨

ଶሻ, 

for  𝑡 ൌ 2 … 𝑇; and  

𝑠௜௧~𝑁ሺ ఘబ

ଵିఘ
, ఙೠ

మ

ଵିఘమሻ  

for 𝑡 ൌ 1. 

•Only assume the 
marginal distribution 
𝑢௜௧~  𝑁ାሺ0, 𝜎௨

ଶሻ 

• The time 
dependence of the 
cross period 𝑢௜௧’s 
are captured by a 
copula function 

• 𝑢௜௧ ൌ 𝜌𝑢௜௧ିଵ ൅ 𝑢௜௧
∗ ,  

for 𝑡 ൌ 1, … , 𝑇 

•𝑢௜௧
∗ ~𝑁ାሺ0, 𝜎௨೔

ଶ ሻ,  

for 𝑡 ൌ 1, … , 𝑇; and 

𝑢௜଴~𝑁ାሺ0, 𝜎௨೔
ଶ /ሺ1 െ

𝜌ଶሻሻ. 

Estimation GMM Bayesian  Bayesian QML FML, PCL, MCL, QML 
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Table 2: Biases of the FML, PCL and QML estimator under heterogeneous 𝑢௜௧
∗  

𝑇 𝑁 𝛽ଵ 𝛽ଶ 𝜋଴ 𝜋ଵ 𝜌 𝜎௩
ଶ 𝛿଴

 𝛿ଵ 
  A. Bias of FML estimator 

5 25 0.0004 0.0014 -0.0847 -0.0023 -0.0323 -0.0099 0.0016 -0.1154
 50 0.0006 -0.0007 -0.0602 0.0028 -0.0290 -0.0074 -0.0007 -0.0325
 100 0.0000 0.0003 -0.0301 -0.0002 -0.0211 -0.0050 -0.0006 -0.0130

10 25 0.0001 -0.0005 -0.0357 -0.0005 -0.0312 -0.0077 -0.0009 -0.0249
 50 -0.0004 -0.0004 -0.0300 0.0001 -0.0245 -0.0057 -0.0007 -0.0093
 100 -0.0003 -0.0001 -0.0093 -0.0003 -0.0119 -0.0027 -0.0004 -0.0021

15 25 0.0001 0.0004 -0.0322 0.0001 -0.0298 -0.0070 -0.0011 -0.0064
 50 -0.0001 0.0000 -0.0178 0.0002 -0.0142 -0.0033 -0.0005 -0.0020
 100 -0.0002 -0.0001 -0.0190 0.0004 -0.0152 -0.0034 -0.0004 -0.0001

  B. Bias of PCL estimator 
5 25 0.0006 0.0014 -0.1777 0.0035 -0.0188 0.0017 -0.1250 0.0147
 50 0.0005 -0.0006 -0.1036 0.0033 -0.0143 -0.0008 -0.0297 0.0035
 100 0.0000 0.0004 -0.0755 -0.0004 -0.0121 -0.0005 -0.0132 0.0005

10 25 0.0002 0.0000 -0.1112 -0.0002 -0.0191 -0.0008 -0.0250 0.0035
 50 -0.0004 -0.0004 -0.1010 0.0004 -0.0165 -0.0006 -0.0092 0.0027
 100 -0.0005 -0.0001 -0.0827 -0.0002 -0.0137 -0.0003 -0.0053 0.0048

15 25 0.0001 0.0004 -0.1092 0.0000 -0.0189 -0.0008 -0.0100 0.0046
 50 -0.0002 0.0002 -0.0933 0.0003 -0.0150 -0.0004 -0.0028 0.0029
 100 -0.0002 -0.0001 -0.0981 0.0003 -0.0153 -0.0002 -0.0020 0.0031

  C. Bias of QML estimator 
5 25 -0.0008 0.0002 -0.0814 0.0000 -0.0432 -0.0134 0.0029 -0.1440
 50 0.0003 -0.0008 -0.0604 0.0047 -0.0310 -0.0083 -0.0005 -0.0294
 100 0.0000 0.0002 -0.0406 0.0003 -0.0309 -0.0073 -0.0005 -0.0118

10 25 -0.0006 0.0000 -0.0633 0.0012 -0.0507 -0.0124 -0.0007 -0.0219
 50 -0.0003 -0.0005 -0.0438 0.0002 -0.0381 -0.0088 -0.0007 -0.0087
 100 -0.0004 -0.0002 -0.0333 -0.0001 -0.0281 -0.0063 -0.0003 -0.0051

15 25 -0.0004 -0.0010 -0.0437 0.0003 -0.0447 -0.0105 -0.0009 -0.0090
 50 0.0000 -0.0001 -0.0503 0.0006 -0.0345 -0.0078 -0.0004 -0.0052
 100 -0.0002 0.0000 -0.0418 0.0003 -0.0295 -0.0065 -0.0003 -0.0015

  D. Bias of MCL estimator 
5 25 0.0005 0.0017 -0.1862 -0.0003 -0.0992 -0.0240 0.0019 -0.1241
 50 0.0005 -0.0006 -0.1243 0.0032 -0.0770 -0.0176 -0.0007 -0.0323
 100 -0.0001 0.0004 -0.0991 -0.0004 -0.0710 -0.0157 -0.0004 -0.0150

10 25 0.0002 -0.0001 -0.1209 -0.0001 -0.0906 -0.0205 -0.0007 -0.0262
 50 -0.0004 -0.0004 -0.1123 0.0004 -0.0826 -0.0181 -0.0005 -0.0103
 100 -0.0005 -0.0001 -0.0940 -0.0003 -0.0709 -0.0153 -0.0002 -0.0062

15 25 0.0001 0.0004 -0.1161 0.0000 -0.0900 -0.0199 -0.0008 -0.0108
 50 -0.0002 0.0002 -0.1002 0.0002 -0.0736 -0.0160 -0.0004 -0.0033
 100 0.0002 0.0002 -0.1007 0.0001 -0.0717 -0.0154 -0.0002 -0.0021

Note: a. Total number of replications is 1000.  b. 𝜎௨೔
ଶ ൌ expሺ𝛿଴ ൅ 𝛿ଵ𝑤௜ሻ.  
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Table 3: RMSEs of the FML, PCL and QML estimator under heterogeneous 𝑢௜௧
∗  

𝑇 𝑁 𝛽ଵ 𝛽ଶ 𝜋଴ 𝜋ଵ 𝜌 𝜎௩
ଶ 𝛿଴

 𝛿ଵ 
  A. RMSE of FML estimator 
5 25 0.0172 0.0335 0.8360 0.1157 0.2753 0.0580 0.0097 0.2186
 50 0.0140 0.0198 0.5283 0.0743 0.1771 0.0373 0.0054 0.1375
 100 0.0087 0.0151 0.3364 0.0502 0.1172 0.0247 0.0037 0.0939

10 25 0.0132 0.0183 0.3604 0.0287 0.1669 0.0353 0.0052 0.1351
 50 0.0084 0.0142 0.2430 0.0198 0.1149 0.0243 0.0035 0.0887
 100 0.0060 0.0096 0.1620 0.0131 0.0734 0.0155 0.0024 0.0618

15 25 0.0107 0.0155 0.2634 0.0144 0.1318 0.0280 0.0037 0.1019
 50 0.0067 0.0106 0.1685 0.0094 0.0884 0.0187 0.0026 0.0673
 100 0.0050 0.0076 0.1228 0.0069 0.0611 0.0129 0.0019 0.0471

  B. RMSE of PCL estimator 
5 25 0.0174 0.0334 0.7934 0.1134 0.0575 0.0105 0.3375 0.1367
 50 0.0140 0.0199 0.5047 0.0721 0.0374 0.0053 0.1379 0.0549
 100 0.0087 0.0151 0.3265 0.0491 0.0249 0.0038 0.0942 0.0368

10 25 0.0134 0.0183 0.3570 0.0281 0.0357 0.0054 0.1372 0.0714
 50 0.0085 0.0142 0.2405 0.0195 0.0243 0.0036 0.0894 0.0366
 100 0.0060 0.0096 0.1610 0.0129 0.0161 0.0025 0.0624 0.0252

15 25 0.0107 0.0156 0.2599 0.0141 0.0285 0.0039 0.1042 0.0556
 50 0.0068 0.0107 0.1668 0.0093 0.0191 0.0026 0.0699 0.0282
 100 0.0050 0.0075 0.1201 0.0067 0.0130 0.0019 0.0489 0.0196

  C. RMSE of QML estimator 
5 25 0.0184 0.0344 0.9989 0.1204 0.3288 0.0689 0.0121 0.3265
 50 0.0139 0.0202 0.5549 0.0765 0.2083 0.0439 0.0056 0.1409
 100 0.0088 0.0152 0.3605 0.0505 0.1399 0.0296 0.0040 0.0969

10 25 0.0139 0.0187 0.4023 0.0291 0.2001 0.0424 0.0058 0.1381
 50 0.0085 0.0142 0.2772 0.0201 0.1329 0.0281 0.0037 0.0908
 100 0.0061 0.0096 0.1801 0.0134 0.0871 0.0185 0.0025 0.0630

15 25 0.0108 0.0159 0.2981 0.0147 0.1598 0.0341 0.0041 0.1024
 50 0.0069 0.0113 0.1974 0.0098 0.1074 0.0228 0.0027 0.0706
 100 0.0050 0.0073 0.1374 0.0071 0.0718 0.0152 0.0019 0.0485

  D. RMSE of MCL estimator 
5 25 0.0176 0.0343 0.7815 0.1095 0.2733 0.0592 0.0105 0.2875
 50 0.0141 0.0199 0.5133 0.0724 0.1767 0.0379 0.0054 0.1393
 100 0.0088 0.0151 0.3256 0.0488 0.1173 0.0252 0.0040 0.0969

10 25 0.0135 0.0182 0.3582 0.0281 0.1673 0.0362 0.0056 0.1388
 50 0.0085 0.0142 0.2408 0.0194 0.1129 0.0245 0.0037 0.0903
 100 0.0060 0.0096 0.1614 0.0129 0.0753 0.0162 0.0026 0.0629

15 25 0.0107 0.0156 0.2608 0.0141 0.1317 0.0287 0.0039 0.1051
 50 0.0068 0.0108 0.1672 0.0093 0.0887 0.0192 0.0027 0.0702
 100 0.0050 0.0070 0.1248 0.0073 0.0595 0.0128 0.0021 0.0495

Note: a. Total number of replications is 1000.  b. 𝜎௨೔
ଶ ൌ expሺ𝛿଴ ൅ 𝛿ଵ𝑤௜ሻ.
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Table 4: Relative Biases of the likelihood-based estimators 
𝑇 𝑁 𝛽ଵ 𝛽ଶ 𝜋଴ 𝜋ଵ 𝜌 𝜎௩

ଶ 𝛿଴
 𝛿ଵ 

  A. Relative Bias ൌ Biasሺθ෠୔େ୐ሻ/Biasሺθ෠୊୑୐ሻ 
5 25 1.4055 0.9635 2.0993 -1.5690 0.5819 -0.1758 -78.1155 -0.1276

 50 0.8924 0.8503 1.7228 1.1534 0.4941 0.1082 40.0052 -0.1078
 100 1.5397 1.3525 2.5080 1.6942 0.5727 0.1074 21.5558 -0.0404

10 25 3.9386 -0.0261 3.1155 0.4383 0.6099 0.0973 27.7548 -0.1420
 50 1.1431 0.9910 3.3727 4.3312 0.6737 0.1064 13.8886 -0.2863
 100 1.4491 1.2181 8.9253 0.8172 1.1468 0.0987 12.3448 -2.3038

15 25 0.7050 0.9836 3.3941 -0.0166 0.6340 0.1186 9.1460 -0.7251
 50 2.9202 45.4352 5.2549 1.0109 1.0572 0.1226 5.7742 -1.4421
 100 0.6879 1.1621 5.1764 0.6854 1.0037 0.0637 5.2249 -22.0859
  B. Relative Bias ൌ Biasሺθ෠୕୑୐ሻ/Biasሺθ෠୊୑୐ሻ 

5 25 -1.8170 0.1690 0.9613 -0.0118 1.3368 1.3567 1.8002 1.2479
 50 0.4251 1.0949 1.0040 1.6628 1.0669 1.1203 0.7288 0.9053
 100 1.1524 0.8695 1.3496 -1.3382 1.4664 1.4624 0.8661 0.9028

10 25 -10.5124 -0.0861 1.7730 -2.2433 1.6245 1.5999 0.8236 0.8793
 50 0.8913 1.2267 1.4611 2.4015 1.5537 1.5361 0.9841 0.9367
 100 1.2299 2.1220 3.5947 0.3976 2.3600 2.2877 0.7503 2.4583

15 25 -2.8828 -2.6316 1.3591 2.0280 1.4981 1.4972 0.7903 1.4125
 50 -0.1251 -20.0849 2.8312 2.5505 2.4388 2.3512 0.8748 2.6079
 100 0.7370 -0.3739 2.2073 0.7806 1.9388 1.9179 0.7370 10.4517
  C. Relative Bias ൌ Biasሺθ෠୔େ୐ሻ/Biasሺθ෠୕୑୐ሻ 
5 25 -0.7735 5.7003 2.1838 133.2226 0.4353 -0.1296 -43.3933 -0.1022
 50 2.0992 0.7766 1.7159 0.6937 0.4631 0.0966 54.8945 -0.1191
 100 1.3361 1.5555 1.8583 -1.2660 0.3906 0.0734 24.8870 -0.0448

10 25 -0.3747 0.3032 1.7572 -0.1954 0.3755 0.0608 33.6993 -0.1614
 50 1.2825 0.8079 2.3083 1.8035 0.4336 0.0693 14.1129 -0.3056
 100 1.1782 0.5740 2.4829 2.0552 0.4859 0.0431 16.4534 -0.9372

15 25 -0.2445 -0.3738 2.4972 -0.0082 0.4232 0.0792 11.5735 -0.5133
 50 -23.3483 -2.2622 1.8560 0.3963 0.4335 0.0521 6.6007 -0.5530
 100 0.9334 -3.1078 2.3451 0.8780 0.5177 0.0332 7.0890 -2.1131

  D. Relative Bias ൌ Biasሺθ෠୑େ୐ሻ/Biasሺθ෠୊୑୐ሻ 
5 25 1.1527 1.1603 2.1993 0.1205 3.0666 2.4372 1.2163 1.0758
 50 0.8790 0.8337 2.0656 1.1406 2.6525 2.3809 0.9087 0.9928
 100 2.8063 1.4296 3.2917 1.8467 3.3627 3.1207 0.7074 1.1481

10 25 3.0199 0.1076 3.3882 0.1597 2.9013 2.6449 0.7615 1.0492
 50 1.1656 0.9837 3.7490 4.6006 3.3662 3.1686 0.8118 1.1143
 100 1.4296 1.3153 10.1445 0.8241 5.9426 5.6019 0.5050 3.0078

15 25 0.6219 1.0581 3.6057 -0.1631 3.0196 2.8422 0.7145 1.6942
 50 2.9538 44.5435 5.6421 0.9827 5.1981 4.8382 0.7748 1.6594
 100 -0.6657 -1.5103 5.3109 0.2685 4.7067 4.5822 0.5452 14.9517

Note: a. Total number of replications is 1000.  b. The values in bold are either greater than 1 or less than െ1. 



 

34 

 

 

 
  

Table 5: Relative MSEs of the likelihood-based estimators 

𝑇 𝑁 𝛽ଵ 𝛽ଶ 𝜋଴ 𝜋ଵ 𝜌 𝜎௩
ଶ 𝛿଴

 𝛿ଵ 
  A. Relative RMSE ൌ RMSEሺθ෠୔େ୐ሻ/RMSEሺθ෠୊୑୐ሻ 

5 25 1.0160 0.9977 0.9491 0.9797 0.2089 0.1809 34.9357 0.6252
 50 1.0071 1.0048 0.9554 0.9704 0.2111 0.1408 25.5925 0.3996
 100 0.9964 0.9990 0.9706 0.9784 0.2124 0.1548 25.2412 0.3914

10 25 1.0152 0.9998 0.9905 0.9784 0.2138 0.1531 26.3528 0.5289
 50 1.0154 0.9963 0.9896 0.9814 0.2115 0.1486 25.3562 0.4125
 100 0.9966 1.0049 0.9938 0.9866 0.2194 0.1618 25.9343 0.4077

15 25 0.9944 1.0066 0.9869 0.9799 0.2163 0.1382 28.4252 0.5459
 50 1.0136 1.0089 0.9898 0.9892 0.2159 0.1414 26.8185 0.4190
 100 0.9859 0.9830 0.9780 0.9708 0.2124 0.1488 26.0822 0.4171
  B. Relative RMSE ൌ RMSEሺθ෠୕୑୐ሻ/RMSEሺθ෠୊୑୐ሻ 

5 25 1.0709 1.0268 1.1949 1.0401 1.1944 1.1885 1.2557 1.4934
 50 0.9980 1.0216 1.0504 1.0285 1.1760 1.1764 1.0347 1.0248
 100 1.0104 1.0082 1.0715 1.0058 1.1935 1.1989 1.0652 1.0318

10 25 1.0469 1.0214 1.1161 1.0141 1.1995 1.2011 1.1215 1.0224
 50 1.0164 0.9976 1.1408 1.0145 1.1562 1.1563 1.0420 1.0231
 100 1.0103 1.0073 1.1116 1.0240 1.1869 1.1941 1.0592 1.0188

15 25 1.0055 1.0243 1.1321 1.0218 1.2123 1.2160 1.1304 1.0051
 50 1.0403 1.0599 1.1712 1.0495 1.2146 1.2232 1.0200 1.0483
 100 0.9901 0.9591 1.1182 1.0181 1.1757 1.1800 0.9967 1.0289
  C. Relative RMSE ൌ RMSEሺθ෠୔େ୐ሻ/RMSEሺθ෠୕୑୐ሻ 

5 25 0.9488 0.9717 0.7943 0.9419 0.1749 0.1522 27.8211 0.4187
 50 1.0091 0.9836 0.9095 0.9435 0.1795 0.1197 24.7332 0.3900
 100 0.9861 0.9909 0.9058 0.9727 0.1780 0.1291 23.6969 0.3793

10 25 0.9488 0.9717 0.7943 0.9419 0.1749 0.1522 27.8211 0.4187
 50 1.0091 0.9836 0.9095 0.9435 0.1795 0.1197 24.7332 0.3900
 100 0.9861 0.9909 0.9058 0.9727 0.1780 0.1291 23.6969 0.3793

15 25 0.9889 0.9827 0.8718 0.9590 0.1784 0.1137 25.1463 0.5432
 50 0.9744 0.9519 0.8451 0.9426 0.1778 0.1156 26.2917 0.3997
 100 0.9958 1.0249 0.8747 0.9536 0.1806 0.1261 26.1673 0.4054
  D. Relative RMSE ൌ RMSEሺθ෠୑େ୐ሻ/RMSEሺθ෠୊୑୐ሻ 

5 25 1.0249 1.0254 0.9348 0.9463 0.9927 1.0219 1.0893 1.3151
 50 1.0084 1.0081 0.9717 0.9741 0.9977 1.0157 1.0091 1.0136
 100 1.0052 1.0034 0.9678 0.9723 1.0009 1.0208 1.0740 1.0314

10 25 1.0160 0.9933 0.9937 0.9789 1.0024 1.0255 1.0712 1.0278
 50 1.0172 0.9987 0.9909 0.9797 0.9823 1.0056 1.0468 1.0176
 100 0.9982 1.0072 0.9961 0.9866 1.0268 1.0496 1.0609 1.0179

15 25 0.9965 1.0067 0.9905 0.9801 0.9994 1.0231 1.0723 1.0310
 50 1.0152 1.0103 0.9925 0.9896 1.0032 1.0264 1.0248 1.0428
 100 0.9980 0.9225 1.0158 1.0471 0.9749 0.9948 1.0972 1.0501

Note: a. Total number of replications is 1000.  b. The values in bold are greater than 1. 
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Table 6: The sample statistics 

Variable Mean S.D. Min Max 
ln(opex) 14.7193 1.2252 11.5845 18.5291 
ln(length) 7.5362 1.2470 4.8956 11.1793 
ln(energy) 5.4153 1.3632 2.7962 8.9265 
ln(numberuser) 9.7169 1.3930 6.6080 13.0316 

Mean ln(outage) 13.0332 1.5405 10.2960 17.4694 

Note: Total number of observations is 511. 

 
 
 
 

Table 7: Empirical results 

Variable \ Approach GMM FML PCL MCL QML 
Frontier: ln(opex)     
 ln(length) 0.3180 ** 0.2759 **a 0.2301 *** 0.2216 *** 0.1913  
  (0.1480)  (0.0798)  [0.0646] b [0.0604]  [0.1556]  
 ln(energy) -0.0807  0.0296  0.0017 -0.0024  0.0103  
  (0.0840)  (0.0821)  [0.0772] [0.0784]  [0.1501]  
 ln(numberuser) 0.5143 * 0.4804 *** 0.5745 *** 0.5845 *** 0.5015 ***

  (0.2651)  (0.0938)  [0.0767] [0.0765]  [0.1716]  
 Time -0.0782  -0.0394  -0.0128 -0.0104  -0.0556  
  (0.1575)  (0.0352)  [0.0202] [0.0181]  [0.1514]  
 Cons. 3.3579  7.6181 *** 6.9981 *** 7.0201 *** 8.3786 ***

  (365.37)  (0.7668)  [0.4928] [0.4866]  [1.6503]  
 𝜌 0.9258 *** 0.9117 *** 0.8472 *** 0.8306 *** 0.9072 ***

  (0.1081)  (0.0165)  [0.0330] [0.0357]  [0.0621]  
𝜎௩

ଶ 𝛽௩
c N/A  -5.1094 *** -5.2041 *** -5.1838 *** -5.1599 ***

    (0.1258)  [0.2061] [0.1963]  [0.3036]  
𝜎௨

ଶ Mean ln(outage) 0.0283  0.1747 * 0.2429 * 0.2818 ** 0.3043  

  (1.7188)  (0.0827)  [0.1317] [0.1439]  [0.2641]  
 Cons. -1.5382  -6.6386 *** -7.3289 *** -7.8988 *** -8.3078 ***

  (144.41)  (1.1643)  [1.8088] [2.0434]  [4.4870]  
Note:  a. ***, ** and * denote significance at the 1%, 5% and 10% levels.  b. Numbers in parentheses are 
the FML or unadjusted standard errors, and numbers in brackets are the sandwich standard errors of the 
PCL, MCL and QML estimators.  c. 𝜎௩

ଶ is parameterized as 𝜎௩
ଶ ൌ expሺ𝛽௩ሻ.   
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Table 8: Mean values of (transient) inefficiency, (transient) TE and catch-up rate 

  Eሺ𝑢௜௧
∗ |𝜀௜.ሻ   E൫𝑒ି௨೔೟

∗
ห𝜀௜.൯ Eሺ𝑢௜௧|𝜀௜.ሻ Eሺ𝑒ି௨೔೟|𝜀௜.ሻ   𝑢௜௧ െ 𝑢௜௧ିଵ 

FML             
2008 0.221 (0.032)  0.813 (0.022) 0.221 (0.032) 0.813 (0.022)    N/A 
2009 0.062 (0.043)  0.921 (0.028) 0.260 (0.064) 0.762 (0.036)  0.039 (0.049)
2010 0.104 (0.066)  0.906 (0.053) 0.341 (0.110) 0.707 (0.064)  0.081 (0.063)
2011 0.100 (0.078)  0.908 (0.063) 0.411 (0.141) 0.662 (0.083)  0.070 (0.076)
2012 0.077 (0.028)  0.928 (0.027) 0.451 (0.129) 0.636 (0.078)  0.040 (0.032)
2013 0.097 (0.038)  0.910 (0.034) 0.508 (0.121) 0.601 (0.074)  0.057 (0.040)
2014 0.059 (0.049)  0.922 (0.031) 0.517 (0.121) 0.579 (0.071)  0.009 (0.058)

PCL         
2008 0.191 (0.039)  0.835 (0.028) 0.191 (0.039) 0.835 (0.028)   N/A 
2009 0.075 (0.050)  0.914 (0.034) 0.232 (0.077) 0.784 (0.044)  0.041 (0.057)
2010 0.118 (0.083)  0.894 (0.067) 0.314 (0.131) 0.728 (0.080)  0.083 (0.077)
2011 0.113 (0.094)  0.897 (0.075) 0.379 (0.166) 0.686 (0.102)  0.065 (0.090)
2012 0.084 (0.034)  0.922 (0.032) 0.405 (0.147) 0.668 (0.094)  0.026 (0.041)
2013 0.110 (0.048)  0.899 (0.043) 0.453 (0.145) 0.639 (0.093)  0.048 (0.047)
2014 0.069 (0.056)  0.916 (0.036) 0.448 (0.141) 0.625 (0.086)  -0.005 (0.065)

MCL        
2008 0.178 (0.043)  0.846 (0.031) 0.178 (0.043) 0.846 (0.031)   N/A 
2009 0.072 (0.050)  0.916 (0.035) 0.215 (0.080) 0.796 (0.047)  0.037 (0.057)
2010 0.116 (0.084)  0.896 (0.068) 0.294 (0.134) 0.742 (0.084)  0.080 (0.076)
2011 0.111 (0.095)  0.899 (0.076) 0.356 (0.170) 0.702 (0.106)  0.062 (0.090)
2012 0.082 (0.034)  0.923 (0.033) 0.377 (0.150) 0.687 (0.099)  0.022 (0.041)
2013 0.107 (0.049)  0.902 (0.045) 0.421 (0.151) 0.660 (0.099)  0.043 (0.046)
2014 0.066 (0.054)  0.918 (0.035) 0.412 (0.145) 0.649 (0.092)  -0.009 (0.063)

QML        
2008 0.223 (0.058)  0.813 (0.040) 0.223 (0.058) 0.813 (0.040)   N/A 
2009 0.064 (0.046)  0.921 (0.031) 0.261 (0.090) 0.763 (0.053)  0.039 (0.051)
2010 0.107 (0.074)  0.904 (0.059) 0.344 (0.140) 0.707 (0.082)  0.083 (0.069)
2011 0.103 (0.088)  0.905 (0.070) 0.415 (0.178) 0.662 (0.101)  0.071 (0.084)
2012 0.078 (0.030)  0.927 (0.028) 0.454 (0.166) 0.637 (0.096)  0.039 (0.034)
2013 0.102 (0.045)  0.906 (0.040) 0.514 (0.167) 0.601 (0.094)  0.060 (0.043)
2014 0.062 (0.050)  0.920 (0.032) 0.524 (0.162) 0.579 (0.089)  0.010 (0.058)

Note: a. Numbers in parentheses are standard errors. 
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Figure 1: Kernel density plot of transient inefficiency Eሺ𝑢௜௧

∗ |𝜀௜௧ିଵ, 𝜀௜௧, 𝜀௜௧ାଵሻ by year 
from FML 

 
 
 

 
Figure 2: Kernel density plot of inefficiency Eሺ𝑢௜௧|𝜀௜.ሻ by year from FML 
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Figure 3: Kernel density plot of transient technical efficiency E൫𝑒ି௨೔೟

∗
ห𝜀௜.൯ 

 
 
 
 
 

 
Figure 4: Kernel density plot of technical efficiency Eሺ𝑒ି௨೔೟|𝜀௜.ሻ 
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